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In Section A we will introduce some preliminary notions that will help us throughout the pre-
sentation. Section B formally introduces the idea of Epistemic Planning Graph and its components,
Section B shows the formal demonstration of Theorem 1, and Section ?? illustrates a graphical
example of this data structure. Finally, Section E will present the domains used in the experimental
setting and Section F all the results from our experimental evaluations.

A Background

A.1 The Action Language mA∗

The action language that will used to evaluate the correctness of our e-PG is mA∗. This action
language is an extension of the language mA+ introduced in [1].mA∗ is a high-level action language
for epistemic planning in multi-agent domains. In what follows, we will simply talk about “formulae”
instead of “belief formulae”, whenever there is no risk of confusion. The notion of a Kripke structure
is defined next.

A.1.1 Kripke Structures To better understand the language mA∗, let us re-introduce the
concept of pointed Kripke Structure.

Definition 1 (Kripke Structure). A Kripke structure, also referred to as epistemic model ( e-
model), is a tuple ⟨S, π,B1, . . . ,Bn⟩, where

– S is a set of worlds,

– π : S 7→ 2F is a function that associates an interpretation of F to each element of S,

– For 1 ≤ i ≤ n, Bi ⊆ S × S is a binary relation over S.

Definition 2 (Pointed Kripke Structure). A Pointed Kripke structure, also referred to as
pointed epistemic model (pe-model), is a pair (M, s) where M = ⟨S, π,B1, . . . ,Bn⟩ is a Kripke
structure and s ∈ S. In a pointed Kripke structure (M, s), we refer to s as the real (or actual)
world.
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As in the main paper, for the sake of readability, we use M [S], M [π], and M [i] to denote the com-
ponents S, π, and Bi, of M , respectively. We write M [π](u) to denote the interpretation associated
to u via π and M [π](u)(φ) to denote the truth value of a fluent formula φ with respect to the
interpretation M [π](u).

We will no further describe the properties of the Kripke structures since those are not needed
to for the contribution of this work. Moreover, these are extensively defined in [1].

A.1.2 mA∗ Transition Function mA∗ describes three types of actions that an agent can
perform: world-altering actions (also known as ontic actions), sensing actions, and announcement
actions. Intuitively,

– A world-altering action is used to explicitly modify certain properties of the world.
– A sensing action is used by an agent to refine its beliefs about the world, by making direct

observations.
– An announcement action is used by an agent to affect the beliefs of the agents receiving the

communication.

In general, as for other types of planning, an action can be executed only when the executability
conditions are respected.

Let us now introduce some necessary definitions to present the transition function of mA∗.

Definition 3 (LAG-substitution). An LAG-substitution is a set {p1 → φ1, . . . , pk → φk}, where
each pi is a distinct proposition in F and each φi ∈ LAG. We will implicitly assume that for
each p ∈ F \ {p1, . . . , pk}, the substitution contains p → p. SUBF,AG denotes the set of all LAG-
substitutions.

Definition 4 (Event Model). Given a set AG of n agents, an event model Σ is a tuple
⟨E,Q, pre, sub⟩ where

– E is a set, whose elements are called events;
– Q : AG → 2E×E assigns an accessibility relation to each agent i ∈ AG;
– pre : E → LAG is a function mapping each event e ∈ E to a formula in LAG; and
– sub : E → SUBF,AG is a function mapping each event e ∈ E to a substitution in SUBF,AG.

Definition 5 (mA∗ Action). An epistemic action is a pair (E , Ed), consisting of an event model
E = (E,Q, pre, sub) and a non-empty set of designated events Ed ⊆ E.

Definition 6 (mA∗ Action Execution). Given an action (E , Ed) and an epistemic state (M,Wd),
we say that (E , Ed) is executable in (M,Wd) if, for each w ∈ Wd, there exists at least one e ∈ Ed
such that (M, w) |= pre(e). The execution of (E , Ed) in (M,Wd) results in an epistemic state
(M,Wd)⊗ (E , Ed) = ((W ′,R′, π′),W ′

d) where

• W ′ = {(w, e) ∈W × E | (M, w) |= pre(e)}
• R′

i = {((w, e), (v, f)) ∈W ′ ×W ′ | wRiv ∧ eQif}
• For each (w, e) ∈W ′ and p ∈ F , π′((w, e))(p) is true iff p→ φ ∈ sub(e) and (M, w) |= φ
• W ′

d = {(w, e) ∈W ′ | w ∈Wd and e ∈ Ed}

Let (M, w) be a pe-model and a be an action executable in (M, w). The epistemic action
corresponding to the occurrence of a in (M, w) is defined as follows:
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Definition 7 (Ontic Action Occurrence). Let a be an ontic action with the precondition ψ
and (M, w) a pointed epistemic model. The action representing the occurrence of a in (M, w) is
the pair (∆(a,M, w), {σ}) where ∆(a,M, w) = ⟨E,Q, pre, sub⟩ with

◦ E = {σ, ϵ} if OD(a,M, w) ̸= ∅ and E = {σ} otherwise;

◦ Q(i) = Ri where
1

• Ri = {(σ, σ), (ϵ, ϵ)} for i ∈ FD(a,M, w) and

• Ri = {(σ, ϵ), (ϵ, ϵ)} for i ∈ OD(a,M, w);

◦ pre(σ) = ψ and pre(ϵ) = ⊤; and

◦ sub(ϵ) = ∅ and sub(σ) = {p→ Ψ+(p, a) ∨ (p ∧ ¬Ψ−(p, a)) | p ∈ F}, where
Ψ+(p, a) =

∨
{φ | [a causes p if φ] ∈ D} and Ψ−(p, a) =

∨
{φ | [a causes ¬p if φ] ∈ D}.

Definition 8 (Epistemic Action Occurrence). Let a be a sensing/announcement action with
the precondition ψ and the sensed fluent f , and (M, w) a pointed epistemic model. The epistemic
action representing the execution of a in (M, w) is the pair (∆(a,M, w), {σ, τ}) where ∆(a,M, w) =
⟨E,Q, pre, sub⟩ with

◦ E = {σ, τ, ϵ};
◦ Q(i) = Ri where

• Ri = {(σ, σ), (τ, τ), (ϵ, ϵ)} for i ∈ FD(a,M, w)

• Ri = {(σ, σ), (τ, τ), (ϵ, ϵ), (σ, τ), (τ, σ)} for i ∈ PD(a,M, w)

• Ri = {(σ, ϵ), (τ, ϵ), (ϵ, ϵ)} for i ∈ OD(a,M, w)

◦ pre(σ) = ψ ∧ f , pre(τ) = ψ ∧ ¬f , and pre(ϵ) = ⊤;

◦ sub(x) = ∅ for each x ∈ E.

B e-PG 2.0: Epistemic Planning Graph

As shown in the previous section, the introduction of heuristics might drastically increase the
performance of MEP solvers. To this end, in this article we present e-PG, a Planning Graph that
can be used to reason on the full extent of mA∗.

While the definition of a Planning Graph in the classical setting is relatively “easy”, the same
is not true in the epistemic scenario. In particular, formalizing state-levels for e-PG represents a
challenge on its own. In fact, simply putting all the fluent literals in the states would not capture
enough information, and using complete e-states would result in a massive overhead, given that
they are graph-like structures and their manipulation is very resource-heavy.

The epistemic Planning Graph presented in [7], referred to as e-PG 1.0 from now on, solved
this problem by defining each state-level as a set of partial Kripke structures. This allowed captur-
ing enough information without aggravating the e-PG 1.0 resource consumption. Nonetheless, this
choice did not allow e-PG 1.0 to work whenever a goal with negated beliefs was requested by the
problem.

To overcome such a problem we decided to design a new version of the epistemic Planning Graph,
called e-PG 2.0 (Definition 17). In what follows we will formally introduce its main components
while providing an intuitive explanation of their behaviour.

First, let us describe what a state-level is in e-PG 2.0 (Defintion 11). Following the classical
Planning Graph design, we envisioned a state-level to be comprised of a set of formulae, intuitively

1 When ϵ does not belong to E, the links associated with ϵ are removed.
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those that are true at that state-level. Given that the set of possible belief formulae in a MEP
problem is infinite, and we need our state-levels to have bounded size to ensure termination, we
introduce the idea of formula of interest, inspired by [3]. That is, a formula of interest is a belief
formula that appears in the domain description, i.e., a single fluent literals, an initial descriptor, a
goal, an action precondition, or an observability condition (and its negation to check for oblivious
agents). Moreover, to allow for an easier transition function definition, we also consider formulae
of interest any subformula, as in Definition 9, of the previously mentioned formulae. This set of
formulae is formally described in Definition 10.

Definition 9 (Subformulae). For a belief formula φ, sf(φ) is defined as follows:

– sf(φ) = {φ} if φ is a fluent literal;
– sf(φ) = {φ} ∪ sf(ψ) if φ = Bi(ψ) for some i ∈ AG;
– sf(φ) = {φ} ∪ sf(ψ1) ∪ sf(ψ2) if φ = ψ1 op ψ2 for op ∈ {∧,∨,⇒}; and
– sf(φ) = {φ} ∪ sf(ψ) ∪ {Bi(ψ) | i ∈ α} if φ = Cα(ψ) where α ⊆ AG.

Definition 10 (Formulae of interest). Given a MEP problem P = ⟨⟨F ,AG,A⟩, I,G⟩, we de-
fined its set of formulae of interest ΩP =

⋃
ψ∈ωP

sf(ψ), assumed to be in CNF, where:

ωP = {f,¬f | f ∈ P (F)} ∪ {φe | φe ∈ exec. conditions of a, a ∈ P (AI)}
∪ {φo,¬φo | φo ∈ obsv. conditions of a, a ∈ P (AI)}
∪ {φi | φi ∈ P (I)} ∪ {φg | φg ∈ P (G)}.

After introducing ΩP , we can present the notion of a state-level for e-PG 2.0 in Definition 11.

Definition 11 (e-PG 2.0 – State-level). Given a MEP problem P , a state-level of the Planning
Graph of P is a set S ⊆ ΩP of formulae of interest.

In Definition 12, we outline how to determine the validity of formulae within a given state-level
in e-PG 2.0, to check for action executability, goals, and other conditions. Since, by construction,
a state-level represents a collection of true formulae, all formulae within it are inherently consid-
ered true. Furthermore, to ensure accurate derivation, especially post-action execution, we permit
the derivation of belief formulae by analyzing their subformulae, as shown in Items 2 and 3 of
Definition 12. This methodology ensures that e-PG 2.0 provides an overestimation of the planning
process.

Definition 12 (e-PG 2.0 – Formulae derivation). Given a state-level S and a belief formula
φ we say that S derives φ, denoted by S|∼φ, if:

– φ ∈ S;
– if φ = ψ1 op ψ2 and S|∼ψ1 op S|∼ψ2 for op ∈ {∧,∨,⇒};
– if φ = Cα(ψ) and ∀i ∈ α : Bi(ψ) ∈ S, where α ⊆ AG.

Next, we outline the outcome of executing an applicable action (Definition 13) in e-PG 2.0.

Definition 13 (Applicable action instance). Given a MEP problem P , S ⊆ ΩP a state-level
in the Planning Graph of P , and an action instance a ∈ P (AI), a is applicable in S if S|∼φ, where
φ is the executability condition of a.
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Defintion 14 presents the direct effects of the action in mA∗, i.e., those properties that after the
application of the transition function in mA∗must hold in the updated e-state, as demonstrated
in [2].

Definition 14 (Direct effects of actions in mA∗). Let P be MEP problem, (M, s) a possible
e-state of P (indicated as (M, s) ∈ P ), a ∈ P (AI) an action instance executable in (M, s). Then
we define em(a, (M, s)), the set of effects of a in (M, s), as follows:

– if a is an ontic action and “a causes ℓ” in P then

em(a, (M, s)) =

{ℓ,Biℓ | i ∈ Fa} ∪ {Bj(ϕ),BiBj(ϕ) | j ∈ Oa, i ∈ Fa, (M, s) |= Bj(ϕ)}

– if a is sensing action and “a determines ψ” in P or an announcement action with “a an-
nounces ψ” in P then

em(a, (M, s)) =

{CFa
(ψ),CPa

(CFa
(ψ) ∨CFa

(¬ψ)),CFa
(CPa

(CFa
(ψ) ∨CFa

(¬ψ)))}
∪ {Bj(ϕ),BiBj(ϕ) | j ∈ Oa, i ∈ Fa, (M, s) |= Bj(ϕ)}

Definition 16 intuitively captures an overestimation of the aforementioned direct effects of mA∗

encompassing every formula of interest that can be derived by these effects with any chains of
potentially fully or partially observers (as defined in Definition 15). Essentially, the effects of Defi-
nition 16 encapsulate the set of formulae of interest that will be recognized as true post-execution
of an action instance a applicable in a state-level Si. This set of formulae, therefore, represents an
overestimation of the action’s direct effects following the semantics of mA∗.

Definition 15 (Possible observabilities). Given a MEP problem P , S ⊆ ΩP a state-level in
the Planning Graph of P , and an action instance a ∈ P (AI) applicable in S, then we identify:

– FSa = {i ∈ P (AG) | “i observes a if φ” in P , S|∼φ}
– PS

a = {i ∈ P (AG) | “i aware of a if φ” in P , S|∼φ}

Definition 16 (e-PG 2.0 – Actions effects). Let P be a MEP problem, S be a state-level in
the Planning Graph PG of P , a be an action instance ∈ P (AI) applicable in S, and FSa and PS

a be
the sets of possible observabilities as in Definition 15. We define e(a, S), the set of effects of a in S
in PG, as follows:

– if a is an ontic action and “a causes ℓ” in P then
1. ℓ ∈ e(a, S);
2. if φ = CX(ℓ) belongs to ΩP and X ⊆ FSa then φ belongs to e(a, S); and
3. if φ = Bi1 . . .Bik(ℓ) belongs to ΩP and {i1, . . . , ik} ⊆ FSa then φ belongs to e(a, S).

– if a is sensing action and “a determines ψ” in P or an announcement action with “a an-
nounces ψ” in P then
4. if φ = Bi1 . . .Bik(ψ) belongs to ΩP and {i1, . . . , ik} ⊆ FSa then φ belongs to e(a, S);
5. if φ = CX(ψ) belongs to ΩP and X ⊆ FSa then φ belongs to e(a, S); and
6. if φ = Bi1 . . .Bik(CX(ψ)∨CX(¬ψ)) belongs to ΩP , {i1, . . . , ik} ⊆ FSa ∪PS

a , and X ⊆ FSa then
φ belongs to e(a, S).
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7. if φ = {CZ(CY(CX(ψ) ∨CX(¬ψ))) belongs to ΩP , Z ⊆ FSa , Y ⊆ PS
a , and X ⊆ FSa then φ

belongs to e(a, S).

After defining all the essential components, Definition 17 delineates the computation process for
constructing e-PG 2.0. Intuitively, this process unfolds as follows:

– First of all, we build the initial state-level, i.e., S0, that will contain all the formulae of interest
that are entailed by the initial state of the planning problem.

– After that, we iteratively execute the following procedure until the goal is satisfied by one of
the state-levels or we reach a fixed point2:

• We check if the state-level derives all the goal conditions. If it does, we found the goal.

• If the goal is not found we then execute all the executable actions on the state-level pro-
ducing a new one.

• If the new state differs, i.e., has some new verified formulae, we reiterate the procedure,
otherwise we reach the fixed point concluding that the problem cannot be solved.

Definition 17 (e-PG 2.0). Given a MEP problem P , its initial e-state I; the Planning Graph of
P is an alternate sequence of state-levels (as in Definition 11) and action-levels S0, A0, . . . , Sk, Ak, . . .
where:

– S0 = {φ | φ ∈ ΩP , I |= φ} ∪ {ψ1, ψ2 | φ = ψ1 ∨ ψ2 ∈ ΩP , I |= φ} ;

– for i ≥ 0,

• Ai is the set of action instances applicable in Si; and

• Si+1 = Si ∪ (
⋃
a∈Ai

e(a, Si))

Finally, after constructing the Planning Graph, we can extrapolate useful information to build
diverse heuristics. We will explore these in the next section. Furthermore, we show in Theorem 1
that e-PG 2.0 provides a permissible simplification of the actual plan with respect to the semantics
of mA∗. Observe that the planning graph will eventually level off because of the finiteness of ΩP .
The proof for Theorem 1 is presented in Appendix C, while a simple example of e-PG 2.0 is shown
in Appendix D.

Theorem 1 (e-PG 2.0 Correctness). Let P be a planning problem, PG its Planning Graph,
and φ ∈ ΩP a formula of interest such that PG(Sn)|∼φ and PG(Sk)��|∼φ for k = 0, . . . , n−1. Since for
all a ∈ P (AI) and (M, s) ∈ P we have that {ψ | (M, s) ̸|= ψ,ΦD(a, (M, s)) |= ψ} ⊆ em(a, (M, s)),
then the shortest plan to achieve φ is at least of length n.

Let us note that e-PG 2.0 does not account for indirect effects as potential outcomes of action
application as we assume the results of the action to be fully described by its direct effects as
presented in Definition 14, expressed, in Theorem 1 as “for all a ∈ P (AI) and (M, s) ∈ P we have
that {ψ | (M, s) ̸|= ψ,ΦD(a, (M, s)) |= ψ} ⊆ em(a, (M, s))”. Since these effects are not integral to
the semantics of mA∗ and may not be crucial for Planning Graph construction, their exploration
is reserved for future works.

2 A fixed point is reached whenever a state-level and its successor are identical.
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C e-PG 2.0 Correctness Demonstration

Theorem 1 (e-PG 2.0 Correctness). Let P be a planning problem, PG its Planning Graph, and
φ ∈ ΩP a formula of interest such that PG(Sn)|∼φ and PG(Sk)��|∼φ for k = 0, . . . , n− 1. Since for
all a ∈ P (AI) and (M, s) ∈ P we have that {ψ | (M, s) ̸|= ψ,ΦD(a, (M, s)) |= ψ} ⊆ em(a, (M, s)),
then the shortest plan to achieve φ is at least of length n.

Proof. We will demonstrate Theorem 1 using induction on the number n of the state-level in PG
needed to reach φ. We also assume that all the actions are executable, the case in which they are
not is trivially demonstrated.
Base Case: Let us start by showing that if the initial state-level PG(S0)|∼φ then the theorem is
trivially demonstrated (as there is no shorter plan than the one of length 0).
Induction Hypothesis: We assume that all the relevant formulae entailed by PG(Sn−1) are
reachable in the planning process with plans of length ≥ n− 1.
Inductive Step: Let us now analyze the case when PG(Sn−1)��|∼φ and PG(Sn)|∼φ. Here we need
to show that no plan of length < n that entails φ exists.

Assuming that [a0, . . . , ak] is an optimal plan for φ where k ≥ 0, and we will write (Mi, si) to
denote ΦD(ai, . . . , (ΦD(a1, P (I))). We want to show that k ≥ n. We will show that if (Mi, si) |= ψ
and ψ ∈ ΩP then PG(Si)|∼ψ.

– Base Case: For k = 0. This means that a0 is applicable in (M0, P (I)). This implies that
pre(a0)—the precondition of a0—is satisfied by P (I). By construction of PG, we have that
pre(a0) ∈ S0 and thus a0 is applicable in PG(S0). This means that e(a0, S0) ⊆ S1. Assume
that (M1, s1) |= ψ. If (M0, s0) |= ψ then we have PG(S0)|∼ψ and by construction of PG,
PG(S1)|∼ψ. If (M0, s0) ̸|= ψ then by the assumption of the theorem with respect to a0 and
(M0, s0), we have that {ψ | (M0, s0) ̸|= ψ, (M1, s1) = ΦD(a0, (M0, s0)) |= ψ} ⊆ em(a0, (M0, s0)),
i.e., ψ ∈ em(a0, (M0, s0)). By Definitions 14 and 16, we have that ψ ∈ e(a0, S0), and there-
fore, PG(S1)|∼ψ. This is true because the set of effects defined by Definitions 14 is completely
contained by the effects defined by Definition 16.

– Induction Hypothesis: We assume that if (Mi, si) |= ψ and ψ ∈ ΩP then PG(Si)|∼ψ for
i < n.

– Inductive step: Similar to the base case, omitted for brevity.

Because [a0, . . . , ak] is an optimal plan for φ, we have (Mk+1, sk+1) |= φ. The above shows that
PG(Sk+1)|∼φ and therefore, if k < n− 1, then it contradicts the assumption of the theorem.
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D Example of e-PG 2.0 construction

Let us now introduce an example to clarify how e-PG 2.0 can be constructed starting from a MEP
problem Pex. To do so we will first present Pex, in Example 1, from the well-known Coin in the Box
Domain [2, 7].

Example 1 (Pex: a Coin in the Box problem). Three agents A, B, and C are in a room. In the
middle of the room, there is a box containing a coin. It is common knowledge that:

– Nobody knows which face of the coin is showing (indicated by tails or ¬tails);
– The box is locked (indicated by ¬opened) and only agent A can open it;
– A can peek into the box (if open) to learn the coin status;
– An agent, observing another agent peeking into the box, will conclude that the agent who

peeked knows the coin status—but without knowing it herself;
– Distracting an agent i causes i to not look at the box;
– Signaling an agent i causes the agent to look at the box;
– Announcing that the coin is showing heads or tails will cause everyone to know this fact; and
– A and C are looking, while B is not looking at the box.

We assume, for simplicity, that the coin lies tails up and that only A can peek, distract, and
signal. Agent A wishes to know the status of the coin, and she would like agent B to become aware
of the fact that A knows the state of the coin, while keeping C in the dark.

It is easy to see that agent A could achieve such goal by: 1. distracting C, keeping her from
looking at the box; 2. signaling B to look at the box; 3. opening the box; and 4. peeking into
the box.

Let us start by presenting the set of formulae ΩPex
of interest of Pex, as defined in Definition 10.

ΩPex
= {tails,¬tails,¬opened, (Fluents)

look i,¬look i, (Fluent and obs. cond.)

opened (Fluent and peek⟨A⟩ exec. cond.)
CAG(¬opened),CAG(look A), (Init. cond.)

CAG(¬Bi(tails) ∧ ¬Bi(¬tails)), (Init. cond.)

CAG(¬look B),CAG(look C), (Init. cond.)

BA(tails), (shout⟨A⟩ exec. and Goal cond.)

BB(BA(tails) ∨BA(¬tails)), (Goal cond.)

BC(¬BA(tails) ∧ ¬BA(¬tails))} (Goal cond.)

Where i ∈ AG = {A,B,C}. Let us note that this set is extrapolated by the domain description in
mA∗and, for the sake of brevity, we only present a subset of all the formulae of interest, the ones
needed to create our example. Also we will show only the actions executable by A for the sake of
conciseness, but the planning graph would contain the same action executed by the other agents,
i.e., B and C.

We can now, in Figure 1 illustrate how the Planning Graph is constructed for such a planning
process. With a slight abuse of notations, we will include in the various state-levels also the formulae
that are not verified and we will use the set {φ | IPG |∼φ} to indicate all of those formulae verified
by the state S0 keeping explicit those that are goal formulae for clarity.
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open⟨A⟩

peek⟨A⟩

shout⟨A⟩

signal⟨A⟩(B)

signal⟨A⟩(C)

distr⟨A⟩(B)

distr⟨A⟩(C)

opened

¬tails

¬look A

look B

¬look C

BA(tails)

BB(BA(tails)∨
BA(¬tails))

BC(¬BA(tails)∧
¬BA(¬tails))

{φ | IPG |∼φ}

open⟨A⟩

peek⟨A⟩

shout⟨A⟩

signal⟨A⟩(B)

signal⟨A⟩(C)

distr⟨A⟩(B)

distr⟨A⟩(C)

¬tails

¬look A

BA(tails)

BB(BA(tails)∨
BA(¬tails))

opened

look B

¬look C

BC(¬BA(tails)∧
¬BA(¬tails))

{φ | IPG |∼φ}

¬tails

¬look A

opened

look B

¬look C

BA(tails)

BB(BA(tails)∨
BA(¬tails))

BC(¬BA(tails)∧
¬BA(¬tails))

{φ | IPG |∼φ}

Figure 1: The e-PG 2.0 of Pex. From left to right we have the levels S0, A0, S1, A2, S3. Within each
state-level, derivable formulae (Definition 11), are enclosed in the lower green box. Additionally,
formulae from ΩPex

not yet verified are displayed in the upper red box for clarity. We can see that
S3 verifies all goal conditions outlined in ΩPex , terminating the construction of e-PG 2.0. An action
crossed out in the action-level indicates it is not applicable. A dashed line connecting a formula
to an action indicates the formula as a possible effect of that action that will be derived in the
subsequent state-level, denoted by a solid line from action-level to state-level.

E Domains Description

In this section, we provide an in-detail description of the benchmarks collected from the literature [4–
7] used to test H-EFP.

• Assembly Line (AL). In this problem, there are two agents, each responsible for processing a dif-
ferent part of a product. Each agent can fail in processing her part and can inform the other agent
of the status of her task (action tell). Two agents decide to assemble (action act assemble)
the product or restart (action act res), depending on their knowledge about the product status.
The goal in this domain is fixed, i.e., the agents must assemble the product, but what varies is
the depth of the belief formulae used as executability conditions.

• Coin in the Box (CB). n ≥ 3 agents are in a room where in the middle there is a box containing
a coin. None of the agents know whether the coin lies heads or tails up and the box is locked.
One agent has the key to open the box (action open). Only attentive agents may be aware of
the execution of an action. If an agent is attentive, she may look inside the box (action peek) to
sense the state of the coin. An agent may also share the result (action shout). The goals usually
consist in some agents knowing whether the coin lies heads or tails up while other agents know
that she knows or is ignorant about this.
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• Collaboration and Communication (CC). In this domain, n ≥ 2 agents move along a corridor
with k ≥ 2 rooms in which m ≥ 1 boxes can be located. Whenever an agent enters a room, she
can determine if a certain box is in the room. Moreover, agents can communicate information
about the boxes’ position to the other attentive agents. Initially, we place all the agents inside
room 2. The position of the boxes in initially unknown to each agent. An agent ag may move
only to adjacent rooms (actions left⟨ag⟩ and right⟨ag⟩). To verify the presence of a box b and to
communicate it to other agents, an agent can perform the actions check⟨ag⟩(b) and tell⟨ag⟩(b, ag2),
respectively.

• Grapevine (Gr). n ≥ 2 agents are located in k ≥ 2 rooms. Each agent ag knows a “secret”,
represented by the fluent s ag. An agent can move freely to an adjacent room (actions left⟨ag⟩
and right⟨ag⟩) and she can share a secret with the agents (action share⟨ag⟩(s)) that are in the
room with her. This domain supports different goals, from sharing secrets with other agents to
having misconceptions about agents’ beliefs.

• Selective Communication (SC). SC has n ≥ 2 agents that start in one of the k ≥ 2 rooms in a
corridor. Every agent is free to move from one room to its adjacent (actions left and right). In
only one of the rooms, an agent may acquire some information, represented by the fluent q, by
performing the action sense. Once an agent acquires such information, she may communicate it to
others with the action shout. Depending on the room in which this action is performed, different
agents observe the action. The goals usually require some agents to know certain properties while
other agents ignore them.

F Experimental Evaluation

In this section, all the results of the comparison of EFP and H-EFP. For each domain we will
present all the results for every execution method, noting that we will use the following acronyms
to indicate the diverse resolution strategies:

– BFS: Breadth-First Search. This search method is the one used by EFP and therefore we will
use it to capture the performance of that solver.

– C PG: Best-First Search where the heuristics emulates the one presented in [7], inspired in turn
by the classical way of employing a planning graph. e-PG is used to derive the “importance”
of each belief formula (its distance from the goal level) and then each e-state is characterized
by the sum of the entailed belief formulae scores.

– L PG: Best-First Search where the heuristic calculates the score of an e-state by constructing a
planning graph from it (as initial state) and calculating the length—the shorter the better—of
the constructed e-PG. If an e-PG cannot reach the goal from an e-state, then the e-state is
discarded.

– S PG: Best-First Search where the heuristics is an execution of C PG on every e-state.

– SUB: Best-First Search where heuristics, not dependent from e-PG 2.0, simply associates a higher
evaluation to e-states that satisfy more sub-goals. To improve this heuristic we defined functions
that allow “to break” complex goals into a conjunction of simpler ones to better distinguish
between e-states.
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Let us note that we will compare the solving times, the number of explored nodes3, and the length
of the found plan.

Moreover, in the following tables, for the sake of readability, we will also make use of these
abbreviations:

– ‘TO” to indicate Time-Out (solving time over 120 seconds);
– |AG| to represent the number of agents in the domain;
– |F| to specify the number of fluents in the domain;
– |A| to indicate the number of actions in the domain;
– L to point out the optimal length of the plan; and
– d to specify the depth of the belief formulae used in the Gr domain. All the plans in this table

will have an optimal length of 5 and the use of C means that the instance replaces nested belief
formulae with ones that employ common knowledge.

Assembly Line

|AG| |F| |A| d
Time (seconds) Expanded Nodes Plan Length

BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB

2 4 6

2 0.02 0.032 0.031 0.011 0.018 14 8 8 5 10 5 5 5 5 5

3 0.021 0.038 0.037 0.014 0.019 14 8 8 5 10 5 5 5 5 5

4 0.029 0.06 0.06 0.034 0.021 14 8 8 5 10 5 5 5 5 5

5 0.121 0.309 0.312 0.207 0.064 14 8 8 5 10 5 5 5 5 5

6 0.588 1.602 1.603 1.374 0.196 14 8 8 5 10 5 5 5 5 5

7 6.438 17.116 17.079 11.907 2.768 14 8 8 5 10 5 5 5 5 5

8 36.671 97.306 97.317 84.478 11.043 14 8 8 5 10 5 5 5 5 5

9 TO TO TO TO TO - - - - - - - - - -

C 0.022 0.039 0.039 0.015 0.02 14 8 8 5 10 5 5 5 5 5

Table 1: Performances on the Assembly Line (AL) domain of the various solving approaches of
H-EFP and EFP.

3 This measure is important to show that, even if the heuristics implementation is yet not optimized, its
ability to reduce the search-space has strong results.
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Assembly Line

|AG| |F| |A| d
Time (seconds) Expanded Nodes Plan Length

EFP H-EFP EFP H-EFP EFP H-EFP

2 4 6

2 0.02 0.011 14 5 5 5

3 0.019 0.014 14 5 5 5

4 0.031 0.021 14 10 5 5

5 0.241 0.064 14 10 5 5

6 0.564 0.196 14 10 5 5

7 6.548 2.768 14 10 5 5

8 35.673 11.043 14 10 5 5

9 TO TO - - - -

C 0.022 0.015 14 5 5 5

Table 2: Direct comparison of EFP and H-EFP on the Assembly Line (AL) domain.

Coin in the Box

|AG| |F| |A| L Time (seconds) Expanded Nodes Plan Length

BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB

3 8 21

2 0.001 0.023 0.023 0.01 0.001 2 2 2 4 2 2 2 2 4 2

2 0.001 0.005 0.005 0.001 0.001 2 2 2 2 2 2 2 2 2 2

3 0.007 0.101 0.1 0.011 0.013 11 4 4 4 12 3 4 4 4 4

5 0.105 0.372 0.172 0.018 0.009 107 10 5 5 9 5 5 5 5 7

6 1.013 0.662 0.378 TO TO 931 16 9 - - 6 7 7 - -

7 2.76 0.618 0.299 TO 0.019 2585 16 8 - 16 7 7 8 - 8

Table 3: Performances on the Coin in the Box (CB) domain of the various solving approaches of
H-EFP and EFP.

Coin in the Box

|AG| |F| |A| L Time (seconds) Expanded Nodes Plan Length

EFP H-EFP EFP H-EFP EFP H-EFP

3 8 21

2 0.001 0.001 2 2 2 2

2 0.001 0.002 2 2 2 2

3 0.006 0.005 4 4 3 3

5 0.123 0.009 107 5 5 7

6 1.006 0.378 931 9 6 7

7 2.643 0.019 2585 16 7 8

Table 4: Direct comparison of EFP and H-EFP on the Coin in the Box (CB)) domain.
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Collaboration and Communication

|AG| |F| |A| L Time (seconds) Expanded Nodes Plan Length

BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB

2 10 16

3 0.007 0.028 0.028 0.009 0.005 9 3 3 5 4 3 3 3 5 4

4 0.012 0.022 0.029 TO 0.012 17 4 4 - 11 4 4 4 - 5

5 0.066 0.06 0.045 0.007 0.005 78 7 5 5 6 5 5 5 5 5

6 0.274 0.083 0.057 TO 0.02 301 10 6 - 20 6 6 6 - 9

7 1.125 0.464 0.29 TO 0.05 1200 44 27 - 50 7 12 9 - 11

8 2.344 0.214 TO TO TO 2358 16 - - - 8 9 - - -

2 14 28

3 0.02 0.055 0.055 0.031 0.011 6 3 3 4 3 3 3 3 4 3

4 0.068 0.061 0.066 TO 0.025 24 4 4 - 10 4 4 4 - 5

5 0.515 0.405 0.11 TO 0.029 169 17 5 - 7 5 8 5 - 5

6 2.512 0.436 0.12 TO 0.048 810 19 6 - 19 6 7 6 - 9

7 12.366 0.957 0.369 TO 0.088 4047 39 14 - 18 7 10 8 - 7

2 16 40

3 0.14 0.254 0.253 0.329 0.084 6 3 3 4 3 3 3 3 4 3

4 0.649 0.322 0.306 TO 0.174 29 4 4 - 10 4 4 4 - 5

5 6.493 1.578 0.535 TO 0.244 275 18 5 - 8 5 8 5 - 5

6 37.236 2.79 0.396 TO 0.313 1611 23 6 - 15 6 8 6 - 7

7 TO 5.425 2.14 TO 0.443 - 49 28 - 22 - 12 9 - 9

2 21 52

3 TO TO TO TO TO - - - - - - - - - -

4 TO TO TO TO TO - - - - - - - - - -

5 TO TO TO TO TO - - - - - - - - - -

6 TO TO TO TO TO - - - - - - - - - -

7 TO TO TO TO TO - - - - - - - - - -

3 12 24

3 0.01 0.053 0.053 0.018 0.005 8 3 3 5 3 3 3 3 5 3

4 0.038 0.046 0.058 TO 0.009 30 4 4 - 6 4 4 4 - 4

5 0.272 0.119 0.087 0.018 0.009 177 7 5 6 6 5 5 5 6 5

6 0.771 0.248 0.124 TO 0.014 489 13 6 - 8 6 6 6 - 7

7 7.18 1.533 0.747 TO 0.029 3962 85 40 - 13 7 18 12 - 7

3 14 42

3 0.036 0.118 0.117 0.095 0.017 8 3 3 5 3 3 3 3 5 3

4 0.191 0.171 0.149 0.07 0.027 39 5 4 5 5 4 4 4 5 4

5 3.302 2.941 0.176 TO 0.036 533 72 5 - 8 5 9 5 - 6

6 9.95 1.149 0.295 TO 0.036 1638 28 8 - 8 6 9 6 - 6

7 83.486 23.978 TO TO TO 12093 499 - - - 7 43 - - -

Table 5: Performances on the Collaboration and Communication (CB) domain of the various solving
approaches of H-EFP and EFP.
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Collaboration and Communication

|AG| |F| |A| L Time (seconds) Expanded Nodes Plan Length

EFP H-EFP EFP H-EFP EFP H-EFP

2 10 16

3 0.007 0.005 9 4 3 4

4 0.010 0.012 17 17 4 4

5 0.072 0.005 78 6 5 5

6 0.267 0.02 301 20 6 9

7 1.353 0.05 1200 50 7 11

8 2.144 0.214 2358 16 8 9

2 14 28

3 0.02 0.011 6 3 3 3

4 0.054 0.025 24 10 4 5

5 0.524 0.029 169 7 5 5

6 2.284 0.048 810 19 6 9

7 11.874 0.088 4047 18 7 7

2 16 40

3 0.231 0.084 6 3 3 3

4 0.562 0.174 29 10 4 5

5 5.792 0.244 275 8 5 5

6 36.938 0.313 1611 15 6 7

7 TO 0.443 - 22 - 9

2 21 52

3 TO TO - - - -

4 TO TO - - - -

5 TO TO - - - -

6 TO TO - - - -

7 TO TO - - - -

3 12 24

3 0.01 0.005 8 3 3 3

4 0.034 0.009 30 6 4 4

5 0.263 0.009 177 6 5 5

6 0.837 0.014 489 8 6 7

7 7.362 0.029 3962 13 7 7

3 14 42

3 0.034 0.017 8 3 3 3

4 0.213 0.027 39 5 4 4

5 4.234 0.036 533 8 5 6

6 10.347 0.036 1638 8 6 6

7 86.247 23.978 12093 499 7 43

Table 6: Direct comparison of EFP and H-EFP on the Collaboration and Communication (CC))
domain.
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Grapevine

|AG| |F| |A| L Time (seconds) Expanded Nodes Plan Length

BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB

3 9 24

2 0.009 0.078 0.031 0.008 0.003 6 4 2 3 2 2 2 2 3 2

3 0.058 0.179 0.053 TO 0.005 31 8 3 - 3 3 3 3 - 3

4 0.375 TO 0.064 TO 0.005 161 - 4 - 4 4 - 4 - 4

5 2.269 15.096 0.128 TO 0.011 834 517 6 - 6 5 55 5 - 5

6 6.071 TO 0.208 TO 0.021 2146 - 7 - 7 6 - 6 - 6

7 36.728 TO 0.91 TO TO 12105 - 26 - - 7 - 11 - -

4 12 40

2 0.043 0.204 0.114 0.039 0.01 7 3 2 3 2 2 2 2 3 2

3 0.298 0.766 0.18 TO 0.017 40 10 3 - 3 3 3 3 - 3

4 2.131 3.958 0.222 TO 0.018 230 49 4 - 4 4 8 4 - 4

5 14.779 TO TO TO 0.072 1366 - - - 10 5 - - - 6

6 39.722 TO TO TO 0.08 3706 - - - 7 6 - - - 6

4 16 60

2 0.342 1.24 0.337 0.244 0.06 8 4 2 3 2 2 2 2 3 2

3 4.065 TO 0.54 TO 0.093 71 - 3 - 3 3 - 3 - 3

4 46.455 TO 0.566 TO 0.094 617 - 4 - 4 4 - 4 - 4

5 TO TO 1.267 TO 0.236 - - 6 - 6 - - 5 - 5

6 TO TO 3.325 TO 1.016 - - 7 - 11 - - 6 - 7

Table 7: Performances on the Grapevine (Gr) domain of the various solving approaches of H-EFP
and EFP.

Grapevine

|AG| |F| |A| L Time (seconds) Expanded Nodes Plan Length

EFP H-EFP EFP H-EFP EFP H-EFP

3 9 24

2 0.012 0.003 6 2 2 2

3 0.048 0.005 31 3 3 3

4 0.369 0.005 161 4 4 4

5 2.235 0.011 834 6 5 5

6 5.839 0.021 2146 7 6 6

7 37.238 0.91 12105 26 7 11

4 12 40

2 0.047 0.012 7 3 2 2

3 0.352 0.017 40 3 3 3

4 2.253 0.018 230 4 4 4

5 16.384 0.072 1366 10 5 6

6 38.632 0.08 3706 7 6 6

4 16 60

2 0.373 0.06 8 2 2 2

3 4.274 0.093 71 3 3 3

4 43.672 0.094 617 4 4 4

5 TO 0.236 - 6 - 5

6 TO 1.016 - 11 - 7

Table 8: Direct comparison of EFP and H-EFP on the Grapevine (Gr) domain.
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Selective Communication

|AG| |F| |A| L
Time (seconds) Expanded Nodes Plan Length

BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB BFS L PG S PG C PG SUB

3 5 7

3 0.001 0.006 0.006 0.001 0.001 4 3 3 3 3 3 3 3 3 3

5 0.002 0.013 0.013 TO TO 11 6 6 - - 5 5 5 - -

6 0.005 TO TO TO TO 21 - - - - 6 - - - -

8 0.018 TO TO TO TO 77 - - - - 8 - - - -

7 5 7
5 0.007 0.021 0.021 TO TO 17 6 6 - - 5 5 5 - -

7 0.039 TO TO TO TO 89 - - - - 7 - - - -

8 0.091 TO TO TO TO 208 - - - - 8 - - - -

8 11 13
10 0.004 0.046 0.046 TO 0.005 10 10 10 - 11 10 10 10 - 11

14 0.062 0.097 0.095 TO TO 103 14 14 - - 14 14 14 - -

15 0.171 0.116 0.116 TO TO 261 15 15 - - 15 15 15 - -

9 11 13

6 0.098 TO 0.063 TO 0.006 134 - 6 - 6 6 - 6 - 6

8 0.458 TO TO TO 8.215 553 - - - 3042 8 - - - 100

9 1.768 TO TO TO 7.959 1957 - - - 3042 9 - - - 100

9 0.004 0.04 0.04 0.007 0.005 10 9 9 9 10 9 9 9 9 9

10 0.005 0.053 0.055 0.009 0.007 12 10 10 10 12 10 10 10 10 11

12 38.353 TO 0.314 TO 8.708 37862 - 14 - 3295 12 - 13 - 130

13 0.047 TO 0.132 TO 0.04 70 - 14 - 37 13 - 14 - 16

17 3.576 TO 0.351 TO 0.697 4179 - 22 - 292 17 - 22 - 37

9 12 14

4 0.003 0.032 0.028 0.005 0.003 6 5 4 4 4 4 4 4 4 4

5 0.006 0.055 0.062 0.011 0.005 11 8 7 6 6 5 5 6 6 6

6 0.015 0.086 0.084 0.009 TO 23 13 13 6 - 6 6 6 6 -

7 0.038 0.104 0.096 0.017 0.008 55 12 11 8 8 7 7 7 8 8

8 0.175 TO 0.134 0.026 0.012 133 - 13 10 10 8 - 8 10 10

9 0.262 TO 0.192 0.038 0.017 327 - 16 12 12 9 - 10 12 12

10 0.711 TO 1.6 0.04 0.019 829 - 83 13 13 10 - 27 13 13

11 1.883 TO 0.347 0.052 0.023 2152 - 23 14 14 11 - 16 14 14

Table 9: Performances on the Selective Communication (SC) domain of the various solving ap-
proaches of H-EFP and EFP.
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Selective Communication

|AG| |F| |A| L
Time (seconds) Expanded Nodes Plan Length

EFP H-EFP EFP H-EFP EFP H-EFP

3 5 7

3 0.001 0.001 4 3 3 3

5 0.002 0.002 11 11 5 5

6 0.004 0.005 21 21 6 6

8 0.015 0.013 77 77 8 8

7 5 7
5 0.007 0.007 17 17 5 5

7 0.036 0.039 89 89 7 7

8 0.102 0.091 208 208 8 8

8 11 13
10 0.004 0.004 10 10 10 10

14 0.058 0.062 103 103 14 14

15 0.185 0.116 261 15 15 15

9 11 13

6 0.074 0.006 134 6 6 6

8 0.521 0.458 553 553 8 8

9 1.384 1.768 1957 1957 9 9

9 0.007 0.004 10 10 9 9

10 0.005 0.005 12 12 10 10

12 36.327 0.314 37862 14 12 13

13 0.052 0.04 70 37 13 16

17 3.581 0.351 4179 22 17 22

9 12 14

4 0.003 0.003 6 4 4 4

5 0.007 0.005 11 6 5 6

6 0.023 0.009 23 6 6 6

7 0.034 0.008 55 8 7 8

8 0.135 0.012 133 10 8 10

9 0.356 0.017 327 12 9 12

10 0.726 0.019 829 13 10 13

11 2.038 0.023 2152 14 11 14

Table 10: Direct comparison of EFP and H-EFP on the Selective Communication (SC) domain.
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