
Planning while Believing to Know

University of Udine
Department of Mathematics, Computer Science and Physics

Candidate: Advisor:
Francesco Fabiano Prof. Agostino Dovier

Co-Advisors:
Prof. Enrico Pontelli

Prof. Alessandro Dal Palù

Thesis submitted for the degree of
Doctor of Philosophy in Computer Science, Mathematics and Physics

Cicle: XXXIV Years: 2018–2021

Planning while Believing to Know

University of Udine
Department of Mathematics, Computer Science and Physics

Candidate: Advisor:
Francesco Fabiano Prof. Agostino Dovier

Co-Advisors:
Prof. Enrico Pontelli

Prof. Alessandro Dal Palù

Thesis submitted for the degree of
Doctor of Philosophy in Computer Science, Mathematics and Physics

Cicle: XXXIV Years: 2018–2021

Ai miei Genitori

To my Parents

Abstract

Over the last few years, the concept of Artificial Intelligence (AI) has become
essential in our daily life and in several working scenarios. Among the various
branches of AI, automated planning and the study of multi-agent systems are central
research fields. This thesis focuses on a combination of these two areas: that is,
a specialized kind of planning known as Multi-agent Epistemic Planning. This
field of research is concentrated on all those scenarios where agents, reasoning
in the space of knowledge/beliefs, try to find a plan to reach a desirable state
from a starting one. This requires agents able to reason about her/his and others’
knowledge/beliefs and, therefore, capable of performing epistemic reasoning. Being
aware of the information flows and the others’ states of mind is, in fact, a key
aspect in several planning situations. That is why developing autonomous agents,
that can reason considering the perspectives of their peers, is paramount to model
a variety of real-world domains.

The objective of our work is to formalize an environment where a complete
characterization of the agents’ knowledge/beliefs interactions and updates are
possible. In particular, we achieved such a goal by defining a new action-based
language for Multi-agent Epistemic Planning and implementing epistemic solvers
based on it. These planners, flexible enough to reason about various domains and
different nuances of knowledge/belief update, can provide a solid base for further
research on epistemic reasoning or real-base applications. This is true, especially
considering that one of the proposed approaches formally verifies that the obtained
plan is correct with respect to semantics on which is based.

This dissertation also proposes the design of a more general epistemic planning
framework. This architecture, following famous cognitive theories, tries to emulate
some characteristics of the human decision-making process. In particular, we
envisioned a system composed of several solving processes, each one with its
own trade-off between efficiency and correctness, which are arbitrated by a meta-
cognitive module.

Contents

List of Figures ix

List of Tables xi

1 Introduction & Preliminaries 1
1.1 Motivation . 1
1.2 Planning: Notation and Concepts 4
1.3 Reasoning about Knowledge and Beliefs 16
1.4 Multi-agent Epistemic Planning . 28

2 Possibilities-Based MEP Action Language 39
2.1 Background . 39
2.2 The Epistemic Action Language mAρ 55

3 Communication with Trust 65
3.1 Trust in mAρ . 65
3.2 Capturing Trust with Update Models 77

4 Trust, Misconception, and Lies in MEP 83
4.1 Agents’ Attitudes and Inconsistent Beliefs 83
4.2 Updated Transition Function . 87
4.3 Related Work . 100

5 Comprehensive Multi-Agent Epistemic Planners 103
5.1 Background . 103
5.2 EFP: an Epistemic Forward Planner 106
5.3 PLATO: an Epistemic Planner in ASP 137

6 “Fast and Slow” Epistemic Planning 149
6.1 Background . 149
6.2 MEP System-1 and System-2 . 153
6.3 A Fast and Slow Epistemic Architecture 159

7 Conclusion 167

vii

viii Contents

Appendices

A Propositions Proofs 171
A.1 Preliminary Definitions . 171
A.2 Proofs of Propositions 2.3 to 2.5 . 174
A.3 Proofs of Propositions 3.1 and 3.2 179
A.4 Proof of Proposition 4.1 . 186
A.5 Proofs of Propositions 5.1 to 5.3 . 192

Bibliography 201

List of Figures

1.1 The World Block domain. 6
1.2 The Planning Problem in the World Block domain. 8
1.3 A planning tree for the World Block domain. 11
1.4 The Vacuum-Cleaner domain with both dirty rooms. 13
1.5 The execution of the action Clean in a conformant domain. 14
1.6 Vacuum-Cleaner domain AND-OR tree. 14
1.7 The Soccer domain. 16
1.8 The Kripke structure that represents Planning Domain 1.4. 24
1.9 The Kripke structure of the Planning Domain 1.4 variation. 30
1.10 Example of e-State after update after an announcement. 31
1.11 The execution of the plan ⟨open⟨A⟩, peek⟨A⟩, announce⟨A⟩(heads)⟩. 35

2.1 Execution of an action instance. 43
2.2 Update templates of action types described by Baral et al. [2022]. . 48
2.3 Well-founded sets represented through graphs [Aczel, 1988]. 49
2.4 Representation of the non-well-founded set Ω = {Ω} [Aczel, 1988]. . 50
2.5 Bisimilar Kripke structures. 52
2.6 Representation of a generic possibility w. 54
2.7 From a possibility to a Kripke structure. 55
2.8 The initial state. 62
2.9 Execution of distract_C⟨A⟩. 62
2.10 Execution of open⟨A⟩. 63
2.11 Execution of peek⟨A⟩. 63
2.12 e-State, generated by mAρ and mA∗, size comparison. 64

3.1 The initial e-state described in Planning Domain 3.1. 71
3.2 The result of applying an un-trustworthy announcement. 71
3.3 The result of applying a mis-trustworthy announcement. 74
3.4 The update template (Σ, σ) for the un-trustworthy announcement. . 79
3.5 The update template (Σ, σ) for the mis-trustworthy announcement. 81

4.1 The initial state of Planning Domain 4.1. 93
4.2 Correct sensing example. 94

ix

x List of Figures

4.3 Wrong sensing example. 95
4.4 Announcement with trustful & mistrustful listeners example. 96
4.5 Announcement with mistrustful & stubborn listeners example. . . . 97
4.6 Lie example. 98

5.1 Comparison between EFP 1.0 and P-MAR on SC. 112
5.2 Example of a planning graph. 130

6.1 The schema of MC-2. 158

List of Tables

1.1 Knowledge and beliefs axioms [Fagin et al., 1995, chapter 3]. 26
1.2 SAT problem complexity for DEL [Fagin et al., 1995]. 37
1.3 Complexity of the plan existence problem [Bolander et al., 2015]. . . 38

2.1 Action types and observability relations Baral et al. [2015]. 46
2.2 Observability relations of the actions instances in ∆. 61

5.1 Runtimes for the CC domain for EFP 1.0 and EFP 2.0. 112
5.2 Runtimes for the GR domain for EFP 1.0 and EFP 2.0. 113
5.3 Runtimes for the CB domain for EFP 1.0 and EFP 2.0. 113
5.4 Runtimes for the AL domain for EFP 1.0 and EFP 2.0. 114
5.5 e-States’ size comparison between different solving processes. 115
5.6 Runtimes for the GR domain for EFP 2.0 and RP-MEP. 117
5.7 Time consumption of EFP 2.0 and EFP 2.1 on the CB domain. . . . 122
5.8 Time consumption of EFP 2.0 and EFP 2.1 on the AL domain. . . . 122
5.9 Time consumption of EFP 2.0 and EFP 2.1 on the GR domain. . . 122
5.10 Time consumption of EFP 2.0 and EFP 2.1 on the CC domain. . . . 123
5.11 Memory consumption of EFP 2.0 and EFP 2.1 on the CB domain. . 123
5.12 Memory consumption of EFP 2.0 and EFP 2.1 on the SC domain. . 123
5.13 Memory consumption of EFP 2.0 and EFP 2.1 on the GR domain. . 124
5.14 Memory consumption of EFP 2.0 and EFP 2.1 on the CC domain. . 124
5.15 Solving times of the uninformed searches of EFP 2.1 on CB. 125
5.16 Solving times of the uninformed searches of EFP 2.1 on AL. 126
5.17 Solving times of the uninformed searches of EFP 2.1 on SC. 126
5.18 Solving times of the uninformed searches of EFP 2.1 on GR. 126
5.19 Solving times of the uninformed searches of EFP 2.1 on CC. 127
5.20 Comparison of uninformed and informed search on the CC domain. 128
5.21 Performances comparison between EFP 2.1 and PLATO. 146

xi

xii

Thesis Organization

Here we will provide a high-level overview of each chapter of the thesis. Alongside
the chapters’ content, we will also provide references to published scientific articles—
produced during the Ph.D. period—that constitute the backbone of this work. These
articles have been validated and enriched by the peer-review process, providing
a solid foundation for this dissertation.

1. The first chapter serves as an introduction to the whole thesis. It starts by
providing the motivation for our work, explaining why we decided to direct
our research efforts to Multi-agent Epistemic Planning. It then illustrates some
basic notions related: (i) to the planning area; (ii) to the epistemology world;
and (iii) to their connections. While this chapter does not present any new
contributions, it helps in setting the foundations necessary to understand the
actual contributions. Given the introductory nature of this chapter, we decided
to take inspiration from more experienced authors. In particular, the prominent
reference for the planning introduction was provided by Russell and Norvig [2010]
while, for the epistemic preamble we referred to Fagin et al. [1995], Bolander
and Andersen [2011], Baral et al. [2015], van Ditmarsch et al. [2015].

2. The second chapter introduces the first contribution of our research. In particular,
we present a variation of an epistemic action language, i.e., a language used to
define Multi-agent Epistemic Planning problems. This new language is based
on non-well-founded data structures, called possibilities—initially theorized
by Gerbrandy and Groeneveld [1997]—rather than the more classical Kripke
structures. The chapter illustrates the components of the language highlighting
its advantages with respect to its predecessor, concluding with some remarks on
the correctness of the new specification. To provide enough information about
the newly adopted possibilities, we mostly referred to works by their original
authors, i.e., Gerbrandy and Groeneveld [1997], Gerbrandy [1999]. On the other
hand, the formal definition of the new language was firstly presented in our
work Fabiano et al. [2019] and later improved in Fabiano et al. [2020].

3. Chapter three further analyzes the concept of epistemic action languages. In
particular, it explores how to enrich the aforementioned language with features

xiii

xiv List of Tables

that would allow it to represent more realistic scenarios. We accomplished that by
formalizing the idea of trust between agents. This extension has been devised for
both the possibilities-based and the Kripke structure-based languages. Finally,
we provide some fundamental properties to ensure that the communications with
trust behave as expected. This chapter derives from the work Fabiano [2020]
where we initially tackled the idea of formalizing trust in our epistemic action
language.

4. As a final advancement in our formalization of a general epistemic language
specification we present, in chapter four, the idea of agents’ attitudes. These
attitudes are used to associate each agent with a particular set of biases about
the information received by others. With these extra characterizations, we can
formalize domains with a wider spectrum of interactions; allowing for epistemic
planning domains to become even more realistic. As for the previous chapters,
we captured some fundamental properties of this new addition ensuring its
correctness. This idea was firstly explored and formalized in Fabiano et al.
[2021a].

5. In the fifth chapter we present the implementation of a general and comprehensive
epistemic solver. This C++ planner, called EFP, integrates all the previous
theoretical advancements and constitutes a tool that we hope will be adopted
by the community as the basis for future research. EFP is able to plan while
considering belief relations and concepts such as lies, misconceptions, trust,
and so on. While generality is our primary concern, EFP shows state-of-the-art
performances in reasoning on complete epistemic states as we can see from
the various experimental evaluations presented in the chapter. Finally, we also
present PLATO, a version of the planner in Answer Set Programming. This
planner and its use of the declarative approach are then compared with EFP and
its more classical imperative paradigm. Thanks to its declarative nature PLATO
allows us to formally validate its behaviour, with respect to the underlying
semantics, and therefore the computed plans. Furthermore, this permits to
empirically confirm the results obtained by the versions of EFP that implement
the underlying action language of PLATO.

The EFP version presented is the result of several scientific productions where
its internal structure has been optimized and enriched; in chronological order,
these are Le et al. [2018], Fabiano [2019], Fabiano et al. [2020, 2021a]. PLATO,
instead, has been formalized and implemented initially in Burigana et al. [2020].

6. Chapter six discusses the integration of a famous cognitive theory, that is
“thinking fast and slow” by Kahneman [2011], into the modern concept of AI.

List of Tables xv

This chapter stems from a collaboration with a research group from the IBM
Thomas J. Watson Research Center. While the joint project aims to analyze
cognitive theories to widen the AI capabilities, in this chapter we focus on how
this research can affect the epistemic planning setting. In particular, the chapter
will identify what it means to think fast and slow in Multi-agent Epistemic
Planning, examining also the role of the meta-cognition in an architecture
that employs the aforementioned paradigm. The chapter also introduces an
architecture that, following the schema proposed by Kahneman, is able to tackle
epistemic planning problems. This final contribution is based, alongside countless
hours of discussion with the IBM research group, on the scientific contributions
by Booch et al. [2021], Fabiano et al. [2021b], Ganapini et al. [2021, 2022].

7. The last chapter concludes the thesis with some final remarks on the various
contributions and with a brief description of possible future works.

xvi

An investment in knowledge pays the best interest.

— Benjamin Franklin
Poor Richard’s Almanac

[Franklin, 1750]

1
Introduction & Preliminaries

Contents
1.1 Motivation . 1
1.2 Planning: Notation and Concepts 4

1.2.1 Basic Concepts . 5
1.2.2 Planning Problem Categories 9

1.3 Reasoning about Knowledge and Beliefs 16
1.3.1 Epistemic Logic . 18

1.4 Multi-agent Epistemic Planning 28
1.4.1 Epistemic Actions . 29
1.4.2 Multi-agent Epistemic Planning Problem 32
1.4.3 Complexity Overview 35

1.1 Motivation

Artificial Intelligence (AI for short) is a term, coined by McCarthy, Minsky,

Rochester, and Shannon in 1955, used to capture the idea of autonomous machines

which have capabilities that allow them “to think”. While exploring what it means

“to think” deserves a dissertation on its own, we make use of this term in a loose

and non-formal way to provide the reader with a general intuition of what an

autonomous agent should accomplish. This concept stems from one of the most

important scientific figures of the last century, considered to be the founding father

1

2 1.1. Motivation

of computer science and Artificial Intelligence, Alan Turing. In the first sentence

of his publication “Computing Machinery and Intelligence” [Turing, 1950], Turing

proposed “to consider the question, ‘Can machines think?’”. He also provided

meaning to what it means for a machine “to think” introducing the well-known

Turing’s test, which states that machines can be considered intelligent when they

can mimic the behavior of humans.

With his contribution, Turing effectively initiated the scientific quest of formal-

izing and constructing agents that are able to act on the world out of their own

volition. After McCarthy, Minsky, Rochester, and Shannon proposed and organized

the first meeting on Artificial Intelligence in 1956 [McCarthy et al., 2006], researchers

started to investigate this topic with several revolutionary accomplishments in both

theoretical and practical aspects of AI. In particular, the idea of intelligence has been

refined to incorporate the fundamental aspect of rationality that does not always (nor

often) coincide with human behavior. That is why, nowadays, the idea of machines’

intelligence is not limited to the sole human behavior imitation but also considers

the possibility of agents that reason, or act, following logic, as elegantly summarized

by Russell and Norvig in their book [Russell and Norvig, 2010, chapter 1].

Alongside the novelties introduced at the conceptual level, the AI community

formalized and developed several techniques that permit to model agents which

can solve intricate problems in autonomy. These techniques range from the use of

various formal logics, and in particular modal logic, to the creation of neural-based

structures. The former is an area of study that stems from the field of philosophy

which, after the initial efforts of Clarence Irving Lewis, evolved rapidly [Ballarin,

2021] and has become an essential tool to define rational behavior for our systems.

The latter is a technology that, imitating the physiology of our brain, allows the

agents to perform reasoning tasks emulating (to some degree) the human behavior.

While this idea was firstly studied in the early days of AI, only recently, thanks to

figures such as Geoffrey Hinton, Yoshua Bengio, and Yann LeCun, neural networks

are adopted to solve a wide spectrum of problems, as reported by Bengio et al. [2021].

1. Introduction & Preliminaries 3

While the field of AI has constantly evolved after the intriguing question posed

by Turing in 1950, over the last few years the concept of Artificial Intelligence has

become more and more prominent in our life, whether we are computer science

researchers or not. The concept of autonomous agents, often identified by software

processes, performing tasks of different nature has been accepted and embraced

in both our daily life and in the industry. That is why, AI-driven solutions are,

nowadays, frequently used to tackle problems that range from mundane ones—e.g.,

teaching how to play Sudoku [Hanson, 2021]—to very intricate tasks that require a

high-level of expertise—e.g., analyzing CT scans to help radiologists in identifying

anomalies [Chu et al., 2019, Fabiano and Dal Palù, 2022]. Not only AI techniques

are widely deployed, but it is becoming essential for the majority of the real-world

scenarios, e.g., Industry 4.0, to exploit tools derived from the fields of automated

reasoning and knowledge representations [Lasi et al., 2014].

Even if AI is gaining popularity, most of the research efforts are not directed to

this topic as a whole but to specialized sub-areas; e.g., natural language recognition,

knowledge representation/manipulation, and formal verification. In particular, the

field of automated planning is one of the most important and most studied branches

of AI. As said by Russell and Norvig [2010, chapter 10], “we have defined AI as

the study of rational action, which means that planning—devising a plan of action

to achieve one’s goals—is a critical part of AI”. That is why we decided to focus

our research on the planning problem and, in particular, on those situations where

multiple entities interact with each other. These scenarios, known as multi-agent

for the presence of multiple active entities, are ubiquitous in everyday life and

represent the majority of the “real-world” problems.

To correctly address multi-agent problems, a solving process needs to reason

not only on the state of the world but also on its information flows. As said

by [Van Ditmarsch et al., 2007] “information is something that is relative to a

subject who has a certain perspective on the world, called an agent, and that is

meaningful as a whole, not just loose bits and pieces. This makes us call it knowledge

4 1.2. Planning: Notation and Concepts

and, to a lesser extent, belief ”. That is why epsitemic1 and doxastic2 reasoning come

into play in formalizing such scenarios. These types of automated reasoning are used

to capture the knowledge or beliefs relations among multiple agents and provide

a tool to formalize those settings where the information flows must be considered

by the solving process, e.g., economy [Aumann et al., 1995], security [Balliu et al.,

2011], justice [Prakken, 2013] and politics [Carbonell Jr, 1978].

1.2 Planning: Notation and Concepts

According to Cambridge Dictionary [2021], a plan is “a method for doing or achieving

something, usually involving a series of actions [. . .]” implying that planning

permeates every thought-out process performed by humans, animals, or even

machines. To plan is, in fact, to devise a way of reaching an objective, whether this

goal is to have enough food for the day or to build a skyscraper. The ability to divide

processes, independently of their complexity, into “smaller” and more manageable

ones is paramount to accomplish one’s objectives and, ultimately, to manipulate

the environment to her/his advantage. That is why, designing autonomous agents

that incorporate the ability to select the best course of action to achieve their goals,

is of the utmost importance in Artificial Intelligence.

While the concept of automated planning has several variations (e.g., classi-

cal, conformant, epistemic, etc.) that are used to describe different real-world

scenarios, all of them share the same objective: given an initial configuration

of the environment, find a sequence of permitted actions to reach the desired

configuration of the same environment.

Given its importance inside the AI community, the planning problem is a long-

studied and researched topic. That is why, we will not provide a comprehensive

introduction of this field addressing the interested readers to the book of Russell

and Norvig [2010, chapters 10 and 11] for a much more complete and elegant

description of automated planning.
1From the ancient Greek term ‘episteme’ (ἐπιστήμη) that means ‘knowledge’.
2From the ancient Greek term ‘doxasía’ (δοξασία) that means ‘belief, opinion’.

1. Introduction & Preliminaries 5

1.2.1 Basic Concepts

In what follows we will introduce the basic terminology and concepts, related to

the planning environment, that will be essential to present the contributions of this

thesis. The well-known Block World domain, presented in Planning Domain 1.1, will

be used as a running example to better explain the concepts introduced throughout

this section. In particular, this domain will be used to describe the key features

of planning.

Planning Domain 1.1: Block World

The Block World, due to its simplicity, is one of the most employed domains
when it comes to explaining the basics of planning. This domain consists of a
few simple elements:

• blocks of the same size that can be placed either: on the table, or on top
of another block; and

• a mechanical arm that can move the blocks and can determine whether
it is holding a block or not.

Moreover, there are some constraints that regulate the Block World:

• the mechanical arm can only hold, and therefore move, one block at the
same time; and

• a block can only be placed on top of a clear block—a block with no
blocks on top of it and that is not held by the mechanical arm—or on
the table.

In what follows, we will provide a series of definitions, each followed by an example

based on the Block World domain, to formalize the ideas of state, agent, action,

planning problem, transition function, and solution in planning.

The first fundamental concept that we need to introduce is the idea of planning

state. This concept, formally introduced in Definition 1.1, is used to define a static

“picture” of the environment expressing its properties thanks to fluent literals—

Boolean propositional variables that can change their truth value over time—that

represent different aspects of the state itself.

6 1.2. Planning: Notation and Concepts

Figure 1.1: The World Block domain.

Definition 1.1: Planning State

A state of the domain is a configuration of the environment described by the
domain, referred to as world, represented as a conjunction of ground fluent
literals.

Example 1.1: Planning State Figure 1.1 represents a state in the Block
World domain. This state is defined by the following positive fluent literals:
{onTable_A, onTable_C, onC_B, Clear_Arm}. In this description and in
what follows, the negative fluent literals, e.g., ¬onTable_B or ¬onA_C, might
be omitted for the sake of readability.

Next, let us introduce the idea of agent. Intuitively, an agent is an entity that

acts upon the domain interacting with its elements and/or with other agents

to achieve her/his goal.

Definition 1.2: Planning Agent [McNeill and Bundy, 2010]

An agent is an entity that responds to goals through forming plans to achieve
them and then, possibly, enacts these plans through interacting with the
domain.

Example 1.2: Agent In the Block World domain an agent is the (simulated)
mechanical arm that moves the blocks to find the desired configuration.

After defining the idea of agents as entities that change the states trying

to reach the goal executing some actions, we need to formalize the concept of

planning action. Let us note that execution in a software environment is just

a simulation of the actions.

1. Introduction & Preliminaries 7

Definition 1.3: Action

An action in planning is an operation, made by some agent, that changes the
actual world or its perception. Actions can have executability conditions that
express when an action is, as the name suggests, executable and when it is not.

Example 1.3: Action Given the state in Figure 1.1 we can give an example
of executable and not-executable actions.

• An executable action is take(B). This action states that the mechanical
arm takes block B and keeps it. The executability conditions of this action
are {ClearArm, ¬onB_A, ¬onB_C} which are respected in the current
state. These conditions read as “The action take(B) is executable if:
(i) the mechanical arm is not holding any block; (ii) block A is not on
top of block B; and (iii) block C is not on top of block B.”

• An example of not-executable action is take(C), which demands to
mechanical arm to take block C. This action is not executable because
block C is not clear. More formally, the executability conditions of
this action are {ClearArm, ¬onC_A, ¬onC_B} and, since ¬onC_B is not
respected, the action cannot be executed.

The planning problem (Definition 1.4) formally describes (i) the scenario in which

n ≥ 1 agents act upon; (ii) the starting point; and (iii) the desired configuration. The

combination of these descriptions, alongside the formalization of how an action affects

the world (Definition 1.5), is what allows the agents to find the plan (Definition 1.6).

8 1.2. Planning: Notation and Concepts

Figure 1.2: The Planning Problem in the World Block domain.

Definition 1.4: Planning Problem

A planning problem is a tuple ⟨D, I,G⟩ where:

• D is an action domain expressed in some language: i.e., D describes the
properties of interest of the environment in which the agents are acting
upon and also specifies how the agents themselves can manipulate these
properties through actions;

• I is a set of states of the domain—called Initial state—that describes
the diverse (possible) starting configurations of the world. The example
in Figure 1.2, comprised of single state, is described as: {onTable_A,
onTable_C, holding_B, ¬ClearArm, ¬onA_B, ¬onA_C, ¬onB_A, ¬onB_C,
¬onC_A, ¬onC_B, ¬holding_A, ¬holding_C}.

• G is a set of states of the domain—called Goal state—that describes the
desired configurations of the domain. The example in Figure 1.2, once
again composed of a single state, is described as: {onTable_A, onA_B,
onB_C, ClearArm}.

Before introducing the concept of transition function let us note that since the

action execution may be non-deterministic, and therefore contemplates multiple

states where only one should be intuitively created, we must consider the update

to be capable of handling sets of states. These sets intuitively represent all the

possible states that can be reached considering the various non-deterministic effects.

The special case where all the actions are deterministic simply considers these

sets to be singletons.

1. Introduction & Preliminaries 9

Definition 1.5: Transition Function

A transition function Φ is a function that, given a starting state and an action,
returns a set of states in which the world can be after the execution of the
action in the starting state. More formally, Φ : 2Σ×A→ 2Σ where: Σ is the set
of all the possible states and A the set of all the possible actions in the domain.
If an action a is not executable in a state s ∈ Σ then we will have Φ(a, s) = ∅.
Finally, we consider Φ : Σ× A→ Σ when the actions are constrained to have
deterministic effects.

Definition 1.6: Plan/Solution

A plan/solution for the generic planning problem ⟨D, I,G⟩ is a sequence of
actions ∈ D that, when executed, transforms the the given initial state I into
one of the desired configurations ∈ G.

Once again, assuming the actions to be constrained to have deterministic
effects, a plan/solution is a sequence of actions [a1, . . . , an] such that:

• a1 is executable in every state s belonging to I,

• ai is executable in every state s belonging to ΦD(ai−1, . . . ,ΦD(a1, I)) for
i = 2, . . . , n

• G is true in every state s belonging to ΦD(an, . . . ,ΦD(a1, I)).

Even if the presented terminology is shared across the whole planning community,

as already mentioned, the research in planning is differentiated into several categories.

A brief explanation of all the planning problem types, that are relevant to this

thesis (except for epistemic planning that will have a section on its own, i.e.,

Section 1.3), will be presented next.

1.2.2 Planning Problem Categories
Classical Planning

The idea of classical planning has been present since the birth of AI and it has

been widely explored in the computer science community ever since. That is why,

we believe that introducing this concept with an already existing description, that

has been thought by far more experienced researchers, would be most appropriate.

In particular, the brief yet elegant description written by Bolander and Andersen

10 1.2. Planning: Notation and Concepts

does an excellent job in explaining what classical planning is: “For most of its

early life in the ’60s and ’70s, the field of automated planning was concerned with

ways in which the problem of creating long-term plans for achieving goals could be

formulated, such that solving problems of non-trivial size, would be computationally

feasible. The type of planning that arose from this early work, is what is known

today as Classical Planning”.

The success of classical planning is partially due to the several restrictions

imposed on the world description—i.e., the domain has to be (i) static; (ii) deter-

ministic; and (iii) fully observable [Ghallab et al., 2004]—that make this kind of

problems more tractable and approachable. In particular, (i) a static problem is

represented by a domain that is not modified by elements that are external to the

domain itself. (ii) A domain is deterministic when, for each state s and action a,

the transition function Φ(a, s) has at most one element—i.e., there is no ambiguity

in which state will be the world after the execution of the action. Determinism also

implies that the plan will be in one, and only one, state at each and every step of

the planning computation. (iii) Fully observable means that an agent knows the

complete description of the world, that is, she/he knows the state of every fluent

literal in the domain. Moreover, to maintain its simplicity the classical planning

domains are, most of the time, single-agent—i.e., domains where only one agent

can perform the actions and has to reach the goal.

A good example of classical planning can be, once again, the World Block

domain described in Planning Domain 1.1. Here the single agent—namely, the

mechanical arm—knows everything about the world (if a block or itself is clear or

not, for example), and every action has only one possible outcome.

Several automated tools to solve classical planning problems, known as planners

or solvers (Definition 1.7), have been developed for both “scientific” and industrial

purposes. These tools [Richter and Westphal, 2010, Lipovetzky and Geffner, 2014,

2017], that improve each year in terms of performance and accuracy, are the

foundation of all the instruments developed by the planning community.

1. Introduction & Preliminaries 11

Figure 1.3: A planning tree for the World Block domain.

Definition 1.7: Planner/Solver

A planner (or solver) is a program that computes the solution of any given
planning problem within a compatible domain.

During the years, to improve the performances of the various planners, different

ways of representing the so-called search-space—an abstract representation of the

paths to reachable states in a domain—have been developed. The most common

and used one is referred to as tree and it is shown in Figure 1.3. Along with the

study of how to represent the search space the planning community also studies

ways to explore these spaces defining different strategies that allow the planning

process to find the right balance between resources consumption and accuracy.

Classical planning is often seen as the basic form of all the other kinds of

planning that, usually, consider more intricate problems or allow for a less strict

description of the world. Moreover, since classical planning problems consider

more constrained environments with respect to other types of planning problems,

the existing solvers are the most efficient. In fact, it is not unusual to reduce,

when possible, problems from more complex domains to the classical one—i.e.,

12 1.2. Planning: Notation and Concepts

to elaborate the problem itself so it can be solved by a classical planner—even if

sometimes reducing a domain may cause loss of expressiveness.

Conformant/Contingent Planning

Unfortunately, most of the real-world problems that we want to solve with planning

methods do not comply with the restrictions posed by classical planners. In

particular, agents may not have complete information about some properties of

the world, meaning that they may not be able to retrieve the missing information

until the actual execution of the plan. This type of domain is known as conformant

planning. This “ignorance” leads to a substantial difference, with respect to classical

planning, when it comes to the transition function Φ. While in classical planning

applying an action produces one and only one successor, in conformant planning

Φ produces a set of possible successor states. The most notable consequence is

that—given that the solution for a problem must be true in all the reachable

states (Definition 1.6)—the plan must be valid for all the possible configurations

of the initial state.

In conformant planning the uncertainty derives from the initial state and is

carried on by the actions. This means that the actions do not generate non-

determinism themselves, for example through if-else conditions, but inherit the

uncertainty from the state on which they are executed generating multiple outcomes.

On the other hand, when actions do generate non-determinism we talk about

contingent planning. To better explain this difference we will use two different

descriptions of the same domain, the well-known Vacuum-Cleaner, introduced in

Russell and Norvig [2010, chapter 2].

Planning Domain 1.2: Vacuum-Cleaner

In this domain (represented in Figure 1.4) an agent, the vacuum-cleaner, has to
clean two rooms from the dirt using a sequence made from four actions Left,
Right, Clean, NoOperation that do what their names suggest (described in
detail in Russell and Norvig [2010, chapter 2]).

1. Introduction & Preliminaries 13

Figure 1.4: The Vacuum-Cleaner domain with both dirty rooms.

To differentiate conformant and contingent planning let us define two slightly

different versions of the domain presented in Planning Domain 1.2.

The first one, used for the example of conformant planning, uses the normal

interpretation of the actions but we assume that the vacuum-cleaner cannot perceive

whether the rooms are dirty or clean. This implies that all the states where the

agent is in the left room (accordingly to Figure 1.4) are possible initial states

and the successor states of the action Clean are shown in Figure 1.5. A solution

for this problem is ⟨Clean, Right, Clean⟩; this sequence of actions reaches the

goal from every possible initial state.

On the other hand, the variation devised to present contingent planning uses

a modification of the action Clean. In particular, whenever this action is applied

to a room with dirt in it, the vacuum-cleaner effectively cleans the room but,

sometimes, cleans the other room too. On the other hand, when the same action

is applied to a clean room it sometimes deposits dirt on the carpet. A plan for

the initial state, as described in Figure 1.4, is described by the AND-OR tree in

Figure 1.6—a special data structure that is used to express the search-space in

contingent planning. Without going into detail, we can see that the action Clean

forms the so-called OR nodes (the ones with exiting arrows connected by an edge)

that intuitively capture the idea of non-determinism.

14 1.2. Planning: Notation and Concepts

Figure 1.5: The execution of the action Clean in a conformant domain.

Figure 1.6: AND-OR tree for the Vacuum-Cleaner domain with non-deterministic
actions. In red highlighted the solution ⟨Clean, Right, Clean⟩.

Multi-Agent Planning

Real-world scenarios, often, require more than a single agent that can act upon

the domain. This family of planning problems that considers multiple entities is

called multi-agents planning and it is used to model all those domains where agents’

interactions are fundamental. Even if more agents acting in the same domain

can, initially, seem a more efficient way to solve problems—for example, when we

envision multi-agent as a means of parallelization—in reality, most of the time,

having multiple entities increases the inherent complexity of the solving process.

The family of multi-agent problems engulfs several configurations of domains

1. Introduction & Preliminaries 15

that demand multiple acting entities. Next, we will list briefly some of the most

known and studied configurations in the literature to provide the reader with an

idea of the type of problems tackled by the multi-agent community.

The first way of classifying planning problems derives from the agents-goal

relations. A basic subdivision is given by Bowling et al. [2005]:

• Not-deterministic: Each agent doesn’t know which action, nor when, the other

agents will perform. This implies that agents cannot accurately predict in

which state the world will be in the future.

• Cooperative: The agents try to cooperate to reach the same goal (Planning

Domain 1.3).

• Adversary: Under this specification, we find the most known multi-agent

scenarios; i.e., competitive games. Agents might have, in fact, opposite goals

and try to reach theirs penalizing the others.

• Overlapping Goals: The agents just happen, without willing it, to help each

other to reach their own goal.

Another distinction is based on the type of communications between agents.

We can simplify the subdivision described by Fornara [2003], Katewa [2017] in

two different categories of communication:

• Free: The agents are allowed to freely share their knowledge about the world

(Planning Domain 1.3).

• Privacy limited: Agents can share only certain information with others. It is

also possible that some agents get to share specific types of information with

only a subset of the other agents.

Finally, another distinction, based on the solving process, is introduced by De Weerdt

and Clement [2009] and Fornara [2003]. A planning system can therefore be:

• Centralized: A master agent coordinates the action of the others.

• Decentralized: Each agent acts independently (Planning Domain 1.3).

16 1.3. Reasoning about Knowledge and Beliefs

Figure 1.7: The Soccer domain.

Planning Domain 1.3: Soccer

An example of a decentralized multi-agent planning domain with cooperative
agents and without restrictions about sharing information is a variation of the
Soccer domain presented by Littman [1994].

In this game, each agent is placed in a single cell of the grid (Figure 1.7)
and can move following the compass directions (N, S, E, and W) or wait. Agent
A starts conventionally with the ball but whenever an agent tries to move
in an already occupied cell she/he has to “pass” the ball to the agent that
occupies that cell. The goal of this domain is to bring the ball inside the goal
zone (green in Figure 1.7) without hitting the obstacles (red in Figure 1.7) in
the fastest way possible.

1.3 Reasoning about Knowledge and Beliefs

Logicians have always been interested in describing the state of the world through

formalism that would allow reasoning on the world with logic. This interest has

led, among other things, to the formalization of the aforementioned planning

problem and the introduction of several modal logics [Smullyan, 1968, Chagrov

and Zakharyaschev, 1997, Van Ditmarsch et al., 2007] used to describe different

types of scenarios. The difference between these logics is not merely syntactical,

rather it carries implications in both expressiveness and complexity. Let us take for

example, without going into details, the Boolean propositional logic and the linear

temporal logic (LTL). The first one, being one of the simplest logic, is mostly used

to encode the world as a set of facts that can be true or not and, therefore, allows

to “reduce” properties of the domain to Boolean formulae. The latter instead, even

if it is based on propositional logic, introduces modal operators that allow reasoning

1. Introduction & Preliminaries 17

about time (with a little abuse of the term). The absence of these operators in the

first one makes propositional logic, adopted to represent problems in the complexity

class NP such as SAT, not expressive enough to encode problems that LTL can

deal with. So, in general, we have that different logics have diverse operators and

therefore are suitable for different kinds of automated reasoning.

Nevertheless, even if different, the two logics introduced above are limited to

reason only on the state of the world—i.e., on its “physical” properties and their

changes—and since this thesis aims to tackle the planning problem while considering

the beliefs of the agents, it is clear that neither propositional logic nor LTL suffice

to formalize the domains that we want to explore. Epistemic Logic, on the other

hand, is used to reason not only on the state of the world but also on the agents’

knowledge about the world or the others’ knowledge. Similarly, the logic that

addresses the problem of reasoning on the agents’ beliefs—on both the physical

world and on the others’ beliefs—is referred to as Doxastic Logic [Meyer, 2003].

The idea behind epistemic and doxastic logic is, therefore, to have a formalization

that allows to reason on domains where, not only the state world is taken into

consideration, but also the knowledge/beliefs that the agents have about the world

and about the knowledge/beliefs of each other are considered. That is why we

used these logics as the foundation for our research.

In what follows we will briefly describe the fundamental concepts that are shared

between epistemic and doxastic logic. This introduction is not to be intended as a

complete survey of the vast area of epistemic and doxastic logic but, rather, as a

way of presenting concepts that are paramount to illustrate the contributions of this

thesis. During this work, for the sake of readability, we will make several (intuitive)

assumptions to avoid the need to investigate “mind-twisting” aspects of epistemology

that would complicate the design of autonomous agents—e.g., we assume that the

agents are perfect logicians. For a far more complete, compelling and informative

introduction on this topic we refer the reader to Fagin et al. [1995], Van Ditmarsch

et al. [2007], van Ditmarsch et al. [2015], Rendsvig and Symons [2021].

18 1.3. Reasoning about Knowledge and Beliefs

For the sake of readability let us identify both epistemic and doxastic logic

with the term “epistemic logic” when there is no need to differentiate between

them (differences in reasoning on knowledge or beliefs will be further explored

later in this section). Moreover, for brevity, we will make use of the term “belief”

to encapsulate both the notions of an agent’s knowledge and beliefs about some

information when the context permits it.

1.3.1 Epistemic Logic

Epistemology is the field of study that is concerned about knowledge and beliefs.

Since its early days, Philosophy has always been intertwined with the concepts of

knowledge and beliefs given that they play a central role in the development of

cognitive theories as well as in the understanding of the human reasoning processes.

While Aristotle is considered, among other things, to have initiated the discussion

on epistemology [Rendsvig and Symons, 2021], the first logic formalization of this

field is attributed to Ralph Strode, in 1387 [Boh, 1993]. This formalization, refined

over the years, is what led modern philosophers in the fifties and sixties to define

a complete axiomatization of the logic of knowledge and beliefs that resulted, in

1962, in the book “Knowledge and Belief: An Introduction to the Logic of the

Two Notions” by Hintikka [1962].

While this formalization stems from the area of Philosophy, its application—i.e.,

formally representing knowledge and/or beliefs—rapidly captured the interest of

researchers of diverse areas. Notably, in the 1990s the computer science community

started to embrace the idea of “reasoning about knowledge” and devised several

ways to employ epistemic logic to model scenarios where autonomous agents could

analyze knowledge/belief relations to, for example, better assess winning strategies.

In particular, this thesis explores the interplay between (dynamic) epistemic logic

and the field of planning—the so-called Multi-agent Epistemic Planning problem—

inheriting its research scope from one of the most important works on this topic,

i.e. “Reasoning About Knowledge” by Fagin et al. [1995].

1. Introduction & Preliminaries 19

Let us now introduce epistemic logic, namely the logic that allows to reason

on the agents’ knowledge/beliefs in static domains. In what follows we will make

use of a simple instance of the Coin in the Box domain as a running example to

present the main concepts of epistemic logic.

Planning Domain 1.4: Coin in the Box (Simplified)

Three agents, A, B, and C, are in a room where in the middle there is a box.
The box has a lock that can only be opened with a key. Inside the box, there
is a coin that lies heads up. In the initial configuration of this domain we have
that everybody knows that:

• none of the agents know whether the coin lies heads (identified by heads)
or tails (identified by the negation of heads, i.e., ¬heads) up;

• the box is locked (identified by the negation of opened, i.e., ¬opened);
and

• only agent A has the key (identified by haskey_A and ¬haskey_B,
¬haskey_C).

In Planning Domain 1.4 we are presenting an example of an automated planning

environment, and therefore, we should also specify the possible actions and the

desired goals. Nevertheless, since we will use this example to better explain concepts

of epistemic logic (which refers to static domains), for the moment we will not add

any other specification to avoid unnecessary clutter. The ideas of action, transition

function, and plan are, in fact, directly derived by the interaction between the

field of planning and Dynamic Epistemic Logic. Since this combination is of great

interest for our work, it will be the subject of a dedicated section, i.e., Section 1.4.

Epistemic Logic Terminology

Let us consider a set AG of n ≥ 1 agents and let F be a set of m ≥ 1 propositional

variables, i.e., the fluent literals. With the term epistemic world, or simply world

(Definition 1.8), we identify a subset of elements of F—intuitively, only those that

are true in that world. This means that a world describes a certain configuration

of the environment identifying which properties hold (and, consequently, which

do not). Furthermore, we use the term pointed world or real world to identify

20 1.3. Reasoning about Knowledge and Beliefs

the set of fluent literals that represents the actual configuration of the domain

we are reasoning on.

Definition 1.8: Epistemic World

An epistemic world w is a set of propositional variables of F (w ⊆ F) which
are interpreted as true in w (∀f ∈ w, f |=w ⊤; where ⊤ indicates true). The
remaining elements of F , i.e., the ones that are not in w, are considered to be
false in w (∀f ∈ F \ w, f |=w ⊥; where ⊥ indicates false).

Example 1.4: Epistemic World The description of the real world of
Planning Domain 1.4 is expressed by the following set of true fluent literals:
{heads, haskey_A}. The remaining fluent literals, i.e., opened, haskey_B,
and haskey_C are considered false.

During this thesis, we will, sometimes, make use of the more “complete”
representation that explicitly presents both positive and negative (preceded by
the symbol ¬) fluents to strengthen the clarity of the presentation. Following
this schema, the world taken into consideration would be represented as {heads,
haskey_A, ¬opened, ¬haskey_B, ¬haskey_C}.

In epistemic logic, as already said, we are not only concerned with the en-

vironment properties and that is why each agent i ∈ AG is associated with an

epistemic modal operator Bi. This operator, intuitively, represents the beliefs of the

agent i. While the operator Bi captures the direct beliefs of i, we also consider the

group operator Cα. Cα represents the common beliefs of a group of agents α ⊆ AG,

i.e., every agent in α believes a fact and believes that the others believe it too.

The operators Bi and Cα allow to “enrich” the traditional definition of a fluent

formula (Definition 1.9) and obtain the concept of belief formula (Definition 1.10).

Several other operators, not considered by this thesis, that delineate far more

complex beliefs relations—e.g., the Only Knowing operator presented by Gerhard

and Hector J. [2015]—have been devised.

1. Introduction & Preliminaries 21

Definition 1.9: Fluent Formula [Baral et al., 2015]

A fluent formula is a propositional formula built using the propositional
variables in F and the traditional propositional operators ∧,∨,⇒,¬. A fluent
atom is a formula composed of just an element f ∈ F , instead a fluent literal is
either a fluent atom f ∈ F or its negation ¬f. During this work, we will refer
to fluent literals simply as fluents.

Definition 1.10: Belief Formula [Baral et al., 2015]

A belief formula is defined as follow:

• A fluent formula (Definition 1.9) is a belief formula;

• let φ be belief formula and i ∈ AG, then Bi(φ) is a belief formula;

• let φ1, φ2, and φ3 be belief formulae, then ¬φ3 and φ1 ∧ φ2 are belief
formulae (the connective ∨ is derived as a combination of ¬ and ∧);

• the formulae of the form Cαφ are belief formulae, where φ is itself a
belief formula and ∅ ≠ α ⊆ AG.

The language LC
AG of well-formed belief formulae with common belief, over the sets

F and AG, can be defined compactly way by:

φ ::= f | ¬φ | φ ∧ φ | Bi(φ) | Cα(φ),

where f ∈ F , i ∈ AG and ∅ ̸= α ⊆ AG. We read the formula Bi(φ) as “agent

i believes that φ” and Cα(φ) as “it is common belief between the agents in α

that φ”. In what follows, we will simply talk about “formulae” instead of “belief

formulae”, whenever there is no risk of confusion.

Example 1.5: Belief Formulae Considering Planning Domain 1.4, we can
express “agent B believes that agent A has the key” with BB(BA(haskey_A))
and “it is common belief (between all the agents) that the box is closed” with
C{A,B,C}(¬opened).

Finally, from the ideas of “world” and agents’ beliefs, we can informally define

a state in epistemic logic, i.e., an e-state.

22 1.3. Reasoning about Knowledge and Beliefs

Definition 1.11: Epistemic State (e-State)

An epistemic state is a collection of epistemic worlds believed to be possible by
some agent in the domain. Moreover, an epistemic state captures the agents’
beliefs about both the “physical properties” and others’ beliefs.

Example 1.6: Epistemic State (e-State) The e-state that encapsulates
Planning Domain 1.4, is made of two worlds. The first, the pointed one, is
the one expressed in Example 1.4 and is described as: {heads, haskey_A},
while the latter is identified by {haskey_A}. These two worlds are considered
possible by all the agents (A, B, and C) as they are not able to distinguish
between the case in which the coin is heads or tails up. Nonetheless, no world
that contains opened is found in the e-state as this property is known to be
false by all the agents.

Let us note that Definition 1.11 does not clearly state how the agents’ beliefs are

represented. To do so we will need a much more formal definition of e-state that

will be provided in the next paragraph.

Epistemic Logic Semantic

In the previous paragraph, we introduced the main concepts that are involved in

epistemic logic, providing for them loose and intuitive meanings. Nevertheless, if we

want to adopt these notions to define autonomous reasoners we must provide formal

semantics for the proposed language, supporting the ideas introduced above. In

particular, in this chapter we will explore the Kripke structures [Kripke, 1963], a data

structure widely used in literature (for instance in Fagin et al. [1995], Van Ditmarsch

et al. [2007], Baral et al. [2022]) to model the semantics of epistemic logic. These

structures will allow us to provide a formal meaning for: the aforementioned idea

of “world”; the concept of epistemic state (e-state); and for the entailment of

belief formulae.

1. Introduction & Preliminaries 23

Definition 1.12: Kripke Structure [Kripke, 1963]

A Kripke structure (Figure 1.8) is a tuple ⟨W, π,B1,. . . ,Bn⟩, where:

• W is a set of worlds,

• π : W ↦→ 2F is a function that associates an interpretation of a set of
propositional variables F to each element of W,

• Bi ⊆ W ×W, for i = 1, . . . , n, is a binary relation over W.

Let us observe how Definition 1.12 deals with the terminology introduced in the

previous paragraphs. In fact, we have that each element of W, thanks to its

interpretation (described by π), identifies what we defined above as an “epistemic

world”, i.e., a configuration of the environment. As mentioned above, each e-world

contains only the positive propositional variables, and this is true also in the worlds

of a Kripke structure. For example, the e-world presented in Example 1.4, let

us call it w, is identified in both cases by w = {heads, haskey_A} (represented

by the left circle in Figure 1.8).

From now on whenever we consider Kripke structures we will be referring to

a small variation of the structures: the pointed Kripke structures (Definition 1.13)

that simply add an entry point. This entry point represents what we previously

called the pointed/real world—the actual configuration of the environment on

which we are planning.

Definition 1.13: Pointed Kripke Structure

A Pointed Kripke structure is a pair (M,w) where M = ⟨W, π,B1, . . . ,Bn⟩ is a
Kripke structure and w ∈ W. In a pointed Kripke structure (M,w), we refer to
w as the pointed (or real) world (represented by the bold circle in Figure 1.8).

For the sake of readability, we will make use of M [W], M [π], M [i] and M [B] to

denote the components W, π,Bi and B = {M [Bi] | 1 ≤ i ≤ n} of M , respectively.

We write M [π](w) to denote the interpretation associated to the world w via π

and M [π](w)(ϕ) to denote the truth value of a fluent formula ϕ with respect to

the interpretation M [π](w). Moreover, we will often refer to a Kripke structure

24 1.3. Reasoning about Knowledge and Beliefs

haskey_A
heads

haskey_A{A, B, C}{A, B, C} {A, B, C}

Figure 1.8: The Kripke structure that represents Planning Domain 1.4.

as a directed labeled graph, whose set of nodes is M [W] and whose set of edges

contains (w1, i,w2)3 if and only if (w1,w2) ∈ Bi. (w1, i,w2) is referred to as an edge

coming out of (resp. into) the world w1 (resp. w2).

Intuitively, a Kripke structure describes the possible worlds envisioned by the

agents where the presence of multiple worlds identifies uncertainty. The relation

(w1,w2) ∈ Bi denotes that the beliefs of agent i about the characteristics of

the domain are insufficient for her/him to distinguish between the configuration

described by w1 and the one described by w2. This can be seen in Figure 1.8 where the

two worlds are reachable from one to another by all the agents, meaning that agents A,

B, and C are not able to distinguish between the worlds where the coin is heads or tails

up. This results in agents’ ignorance and we can say that A (and, similarly, B and C)

does not know the coin position (¬BA(heads)∧¬BA(¬heads)). On the other hand,

since from the pointed world agent A (and, similarly, B and C) only reaches worlds

where haskey_A is true we can say that A believes haskey_A (BA(haskey_A)).

Following the informal Definition 1.11, it is clear that the information contained

in a Kripke structure suffices to represent an “e-state”. In particular, the set of

the possible worlds is captured by M [W] and the agents’ beliefs can be derived by

exploring the worlds’ accessibility relations (starting from the real world).

More formally, in Definition 1.14, following Baral et al. [2015], we present how we

can derive the truth value of belief formulae from an epistemic state representation,

i.e., a pointed Kripke structure. This definition allows us to provide semantics for
3(w1, i, w2) denotes the edge from node w1 to node w2, labeled with i.

1. Introduction & Preliminaries 25

the epistemic modal operators Bi and Cα, where i ∈ AG ⊇ α. To better express

the semantics of the operator Cα we will make use of an additional operator Eα.

While Eα does not add any expressiveness to the language it allows us to express

the idea of common belief more elegantly. In fact, iterating on Ek
αφ easily encodes

the intuitive meaning of Cα(φ); that is the conjunction of the following belief

formulae: (i) every agent in α knows φ; (ii) every agent in α knows that every

agent in α knows φ; (iii) and so on ad infinitum.

Definition 1.14: Entailment w.r.t. a Kripke structure

Given, a fluent f, the belief formulae φ, φ1, φ2, an agent i, a group of agents α,
and a pointed Kripke structure (M = ⟨W, π,B1, . . . ,Bn⟩, w):

• (M,w) |= f if f ∈ π(w) (or, alternatively, f |=π(w) ⊤);

• (M,w) |= φ if φ is a fluent formula and π(w) |= φ following the usual
semantics of ¬ and ∧;

• (M,w) |= Bi(φ) if for each t such that (w, t) ∈ Bi it holds that (M, t) |= φ;

• (M,w) |= ¬φ if (M,w) ̸|= φ;

• (M,w) |= φ1 ∧ φ2 if (M,w) |= φ1 and (M,w) |= φ2; and

• (M,w) |= Eαφ if (M,w) |= Bi(φ) for all i ∈ α;

• (M,w) |= Cαφ if (M,w) |= Ek
αφ for every k ≥ 0, where E0

αφ = φ and
Ek+1

α φ = Eα(Ek
αφ).

Axioms Systems

Following the works by Hintikka [1962], Fagin et al. [1995] let us now “quickly”

define an axioms system for LC
AG—i.e., the language of well-formed formulae over

F and AG. Such axiomatization will allow us to better categorize the properties

of the language in relation to the structural constraints that an epistemic state

representation, e.g., a Kripke structure, must respect. In particular, we will provide

the description of some properties, or axioms, on the e-states’ relations—i.e., the

B1, . . . , Bn components of a pointed Kripke structure—or, more simply, its edges.

These axioms, when respected, assure that the fundamental concepts of what we

call knowledge and beliefs are preserved. To better understand what we are referring

26 1.3. Reasoning about Knowledge and Beliefs

Axiom Property of B
T Biφ⇒ φ
4 Biφ⇒ BiBiφ
5 ¬Biφ⇒ Bi¬Biφ
D ¬Bi⊥
K (Biφ ∧ Bi(φ⇒ ψ))⇒ Biψ

Table 1.1: Knowledge and beliefs axioms [Fagin et al., 1995, chapter 3].

to, let us provide both the name and the formal definition of these axioms (the

Left and Right column of Table 1.1, respectively).

Now we will give a brief description of the five axioms that we introduced in

Table 1.1. More details on the axioms and their properties can be found in the

work by Fagin et al. [1995, chapter 3].

• T: Has been introduced to capture the difference between knowledge and belief.

When this axiom holds the real world must reflect the agents’ knowledge,

otherwise the agents might believe something that is not true in the actual

configuration of the environment.

• 4: Models the concept of positive introspection; this means that an agent

must be aware of her/his beliefs.

• 5: Models the concept of negative introspection; similarly to 4 an agent must

be aware of what she/he does not believe.

• D: Introduced to ensure that an agent cannot believe “False”.

• K: Expresses that the agent’s beliefs are closed under logical consequence.

From now on, with KD45n-state we will indicate e-states that consider n agents

and respect the axioms 4, 5, D, and K. Similarly we will refer to the e-states on n

agents that respect all the aforementioned axioms (T, 4, 5, D, and K) as S5n-state.

1. Introduction & Preliminaries 27

Knowledge or Belief

As pointed out in the previous paragraphs the modal operator Bi represents M [i]—

the world relations in a Kripke structure—and, as expected, different relations’

properties imply different meanings for Bi. In particular, in our work, we are

interested in representing the knowledge or the beliefs of the agents. The problem

of formalizing these two concepts has been studied in depth bringing to an accepted

formalization for both [Fagin et al., 1995]. If a relation4 respects all the axioms

presented in Table 1.1 it is called an S5 relation and encodes the concept of

knowledge, while when it respects all the axioms but T characterizes the concept

of belief. That is, when reasoning about knowledge we must guarantee that the

underlying representation is an S5n-state, while when we consider beliefs we need

a KD45n-state. Following these characterizations, we will refer to knowledge and

belief as S5 and KD45 logic, respectively.

Intuitively, the difference between the two logics is that an agent cannot know

something that is not true in S5 but she/he can believe it in KD45. While this

difference may seem superficial, designing a planning system that deals with beliefs

instead of knowledge requires much more attention and increases the difficulty

of the solving process. In fact, a planner that reasons about knowledge can rely

on a very important property that a solver that deals with beliefs cannot exploit.

That is, a planning process based on knowledge can safely assume that the agents’

information is always correct. In other words, once any agent knows a property

she/he will maintain her/his knowledge even if the property changes its truth value.

Moreover—since agents have to know the true nature of the information that they

have—agents can also exploit the T axiom to reason about others’ knowledge;

e.g., if an agent i knows that another agent j knows a property p, then i knows p.

Furthermore, these properties, combined with the most commonly used epistemic

actions (introduced in the next section), ensure that the agents’ information increase

monotonically. This implies that, when an agent learns something, that something

can never be “unlearned” by that agent.
4In our case the relation between the worlds of a Kripke structure.

28 1.4. Multi-agent Epistemic Planning

Contrarily, when we “drop” the T axiom, all of these assumptions do not hold

anymore. This means that, when planning with beliefs, the solving process must

account for the possibility that agents may:

• believe something that is not true in the real world;

• not being aware of changes about the truth value of already believed properties;

• believe something different from other agents;

• become ignorant about certain properties;

• announce/perceive something that does not correspond to the reality; and

• derive chains of beliefs of arbitrary length that cannot be collapsed into the

same information.

All of these points make a planning system that takes into consideration beliefs, more

intricate than one that is based on the S5 logic. Nevertheless, planning on KD45

presents the opportunity to model much more realistic (and interesting) scenarios

and that is why, in this thesis, we tackle the problem of planning on beliefs.

1.4 Multi-agent Epistemic Planning

As already mentioned, reasoning about actions and information has always been

one of the prominent interests since the beginning of AI [Russell and Norvig,

2010]. In particular, the continuous research effort that has characterized the

field of autonomous planning is what ensured its rapid evolution. The “simple”

task of reasoning in the classical planning environments rapidly evolved into more

complex problems [Torreño et al., 2014]. This evolution, dictated both by research

interests and real-world needs, developed interesting families of problems that vary

in multiple aspects such as: (i) the number of agents; (ii) the determinism of the

actions; (iii) the agent’s communication policies; etc.

In particular, in this thesis, we are interested in the combination of the planning

field and epistemic logic. While both of these research areas have been studied and

1. Introduction & Preliminaries 29

formalized since the early sixties, their combination, i.e., Multi-agent Epistemic

Planning (MEP), is a somewhat recent introduction in the Artificial Intelligence

community [Van Ditmarsch et al., 2007]. Epistemic planners, differently from most

of the other solvers, are not only interested in the state of the world but also in the

knowledge or beliefs of the agents. This could also be viewed, as said by Gerbrandy

[1999], as “the process of reasoning on the information itself ”. It is easy to see

that an efficient autonomous reasoner that could exploit both the knowledge on

the world and about other agents’ information could provide an important tool

in several scenarios, e.g., economy, security, justice, or politics.

Nevertheless, reasoning about knowledge and beliefs is not as direct as reasoning

on the “physical” state of the world. That is because expressing, for example, belief

relations between agents often implies considering nested and group beliefs that

are not easily extracted from the state description by a human reader. Even if

several studies [Van Ditmarsch et al., 2007, Wan et al., 2015, Muise et al., 2015,

Huang et al., 2017, Le et al., 2018] have been conducted on this topic, some

fundamental complications remain while characterizing MEP. In particular, the

inherent complexity of reasoning on beliefs is reflected in computational overhead

that brings, most of the time, infeasibility to the solving process. Moreover, modeling

subtle nuances of complex ideas—e.g., trust, lies, misconception, and so on—that

are necessarily present when we reason on beliefs, is a very intricate task that makes

MEP even more difficult to completely grasp. These are some of the reasons why

we deem it necessary to explore the field of Multi-agent Epistemic Planning.

1.4.1 Epistemic Actions

Before exploring what it means to plan on epistemic domains, let us briefly introduce

the idea of action in epistemic logic. As said in Moss [2015], the formalization of

various types of actions and, consequently of formal languages that incorporate

them, is what originated the field of Dynamic Epistemic Logic (DEL). While DEL

is not directly used in our thesis, the formalization provided by the works on this

area [Fagin et al., 1995, van Eijck, 2004, Van Ditmarsch et al., 2007, Moss, 2015]

30 1.4. Multi-agent Epistemic Planning

haskey_A
heads

haskey_A{B, C}{A, B, C} {A, B, C}

Figure 1.9: The Kripke structure that represents the Planning Domain 1.4 variation.

is what profoundly inspired our definition of epistemic action languages and their

transition functions (presented in Chapter 2), fundamental components of our

system. To better explain the concept of epistemic actions let use a variation of

Planning Domain 1.4, as a running example, where we assume that: (i) agent

A believes that the coin position is heads (Figure 1.9); and (ii) agents B and C

believe that A knows the coin position without knowing it themselves (Figure 1.9);

and (iii) the agents have the ability to announce publicly (i.e., to all the other

agents) some property (i.e., a fluent) of the physical world. We capture the agents’

capability with announce⟨i⟩(f), where i ∈ AG is an agent that executes the action5;

and f is the announced physical property. This action type is identified by the

term public announcement and its informal semantics is: “the announcing agent

tells everyone a property that she/he believes, making the other agents believe it

too”. This simple semantics does not consider concepts such as lying agents, or

degrees of trust. Let us note that each action description (independently from the

type) is associated with an executability condition, that is, a belief formula that

when entailed permits the action itself to be executable.

To present the public announcements formal semantics we will follow Moss [2015].

Let us note that the execution of any action implies the possible modification of the

underlying e-state. In particular, to model the semantics of a public announcement,

agents must believe whatever has been announced. To do so, following the notion of

entailment (Definition 1.14), we must ensure that no agent can reach a world where
5Distinguishing between the acting agent and the others is not necessary here, but let use this

notation to be consistent with the rest of the thesis.

1. Introduction & Preliminaries 31

haskey_A
heads

{A, B, C}

Figure 1.10: e-State of Figure 1.9 after the execution of announce⟨A⟩(heads).

the announced property is false. That is, the execution of announce⟨A⟩(heads)

on the e-state depicted in Figure 1.9, must generate an e-state that contains only

worlds that entails heads. This is accomplished by simply eliminating all the worlds

that contain the negation of heads as shown in Figure 1.10. Let us note that

the executability condition for this action is BA(heads). Following Moss [2015],

the formalization of the language that also contains the aforementioned semantics

for public announcements is as follows:

φ ::= f | ¬φ | φ ∧ φ | Bi(φ) | Cα(φ) | [!f]φ,

where f ∈ F , φ is belief formula over AG and F , i ∈ AG and ∅ ≠ α ⊆ AG. While

the epistemic operators B and C have already been formalized, the newly introduced

operator [!f]φ needs to be defined. Contrarily to Bi(φ) and Cα(φ), that operate on

a static e-state, the operator [!f]φ must take into account also the updated version

of the e-state (and that is what transforms epistemic logic into dynamic epistemic

logic). In particular, we read the operator as “if φ is respected in the current state

then, after the execution of the announcement f must be believed by every agent”6.

The axiomatization of this operator, following Moss [2015, equation 6.6], is:

(M,w) |= [!f]φ iff (M,w) ̸|= φ, or else (Mf,w) |= f.

where (Mf,w) is the epistemic state (M,w) updated after the execution of the

announcement.
6The case when an agent announces ¬f is similar.

32 1.4. Multi-agent Epistemic Planning

Public announcement is just one of the possible actions formalized in DEL. Since

we will rely on action languages (typical of planning domains), we will make use of

a formalization that is akin to the one used in the planning area. Therefore, we

will not further explore DEL, addressing the interested reader to Van Ditmarsch

et al. [2007], Moss [2015] for more examples of epistemic actions and a much more

detailed introduction on dynamic epistemic logic.

1.4.2 Multi-agent Epistemic Planning Problem

Bolander and Andersen [2011] define epistemic planning as the generation of plans

for multiple agents to achieve goals which can refer to the state of the world,

the beliefs of agents, and/or the knowledge of agents. After the introduction of

the classical planning problem, in the early days of Artificial Intelligence, several

studies have provided the foundations for several successful approaches to automated

planning. However, the main focus of these research efforts has been about reasoning

within single-agent domains. In single-agent domains, reasoning about actions and

change mainly involves reasoning about what is true in the world, what the agent

knows about the world, how the agent can manipulate the world (using world-

changing actions) to reach particular states, and how the agent (using sensing

actions) can learn unknown aspects of the world.

In multi-agent domains an agent’s action may not just change the world and

the agent’s beliefs about the world, but also may change other agents’ beliefs about

the world and their beliefs about other agents’ beliefs. Similarly, the goals of an

agent in a multi-agent world may involve manipulating the beliefs of other agents.

Although there is a large body of research on multi-agent planning Fagin et al.

[1995], Durfee [2001], Bernstein et al. [2002], Guestrin et al. [2001], De Weerdt

et al. [2003], Goldman and Zilberstein [2004], De Weerdt and Clement [2009],

Allen and Zilberstein [2009], Muise et al. [2015], Baral et al. [2015, 2022], very few

efforts address the above aspects of epistemic domains which pose several research

challenges in representing and reasoning about actions and change.

1. Introduction & Preliminaries 33

Let us now formally introduce the notion of Multi-agent Epistemic Planning

domain in the following definition.

Definition 1.15: MEP Domain

A Multi-agent Epistemic Planning domain is a tupleD = ⟨F ,AG,A, φini, φgoal⟩,
where F , AG, A are the sets of fluents, agents, actions of D, respectively; φini

and φgoal are DEL formulae that must be entailed by the initial and goal e-state,
respectively. The former e-state describes the domain’s initial configuration
while the latter encodes the desired one.

A MEP domain contains the information needed to describe a planning problem

in a multi-agent epistemic setting. Given a domain D we refer to its elements

through the parenthesis operator; e.g., the fluent set of D will be denoted by D(F).

An action instance a⟨α⟩ ∈ D(AI) = D(A) × 2D(AG) identifies the execution of

action a by a set of agents α. Multiple executors are needed in certain types

of actions, for example in the so-called sensing actions (introduced in detail in

the next chapters). On the other hand, actions like the public announcement

introduced above, only require one executor (|α| = 1). The transition function

Φ : D(AI)×D(S)→ D(S) ∪ {∅} formalizes the semantics of action instances (the

result is the empty set if the action instance is not executable). Formal definitions

of this concept will be introduced in Chapters 2 to 4 where we will analyze in detail

diverse transition functions. Intuitively, the features of Planning Domain 1.5 (the

Planning Domain 1.4 completed with actions and goal descriptions) are:

• F = {heads, haskey_X, opened} where X ∈ AG;

• AG ={A, B, C};

• A = {open, peek, announce};

• φini = heads ∧ haskey_A ∧ CAG(haskey_A) ∧ CAG(¬haskey_B) ∧

CAG(¬haskey_C) ∧ CAG(¬opened);

• φgoal = BA(heads) ∧BB(heads) ∧BC(heads);

34 1.4. Multi-agent Epistemic Planning

Planning Domain 1.5: Coin in the Box with Actions (Simplified)

Three agents, A, B, and C, are in a room where in the middle there is a box.
The box has a lock that can only be opened with a key. Inside the box, there
is a coin that lies heads up. In the initial configuration of this domain we have
that everybody knows that:

• none of the agents know whether the coin lies heads or tails up;

• the box is locked; and

• only agent A has the key.

Moreover, we have that each agent can execute one of the following actions:

• open: an agent, if she/he has the key, can open the box. This results in
all the agents believing that the box is open.

• peek: to learn whether the coin lies heads or tails up, an agent can peek
into the box, but this requires the box to be open. This will result in
the peeking agents knowing the coin position while the other agents are
aware of this without knowing the coin position themselves.

• announce: following the public announcement semantics this will result
in all the agents believing the announced coin position. As before, this
action is only executable by an agent who believes the coin position to
be heads.

Finally, the desired configuration, i.e., the goal, of this instance is that all
the agents (A, B, and C) believe that the coin is heads up, i.e., BA(heads) ∧
BB(heads) ∧BC(heads).

The correct solution (or plan) that permits the instance presented in Planning

Domain 1.5 to reach its desired goal is the sequence of action instances ⟨open⟨A⟩,

peek⟨X⟩, announce⟨X⟩(heads)⟩ where X ∈ {A, B, C}. In Figure 1.11 we present the

plan execution, representing the e-state resulting after the execution of each action.

We can see that in Figure 1.11b the execution of open⟨A⟩ modified some property

of the physical world, namely, the fluent opened became true. We will refer to this

type of action, i.e., the ones who modify some physical property, with the term

ontic or, sometimes, world-altering. Ontic actions resemble the actions that we can

find in classical planning. On the other hand, the actions that only deal with agents’

beliefs, e.g., peek and announce, are referred to as epistemic actions. We will see

1. Introduction & Preliminaries 35

haskey_A
heads

haskey_A{A, B, C}{A, B, C} {A, B, C}

(a) The initial e-state described in Planning
Domain 1.5.

opened
haskey_A
heads

opened
haskey_A

{A, B, C}{A, B, C} {A, B, C}

(b) The e-state obtained after the execution
of open⟨A⟩.

opened
haskey_A
heads

opened
haskey_A

{B, C}{A, B, C} {A, B, C}

(c) The e-state obtained after the execution of
peek⟨A⟩.

opened
haskey_A
heads

{A, B, C}

(d) The e-state obtained after the execution
of announce⟨A⟩(heads).

Figure 1.11: The execution of the plan ⟨open⟨A⟩, peek⟨A⟩, announce⟨A⟩(heads)⟩.

in Chapter 2 how these two types of actions have different transition functions.

In Figure 1.11c we assume that the executor is agent A. This means that A must

believe that the coin is heads up. To ensure this we simply remove all the edges that,

from the pointed world, allow A to reach a world where heads is not true. We leave

the edge that allows A to loop on the right world of Figure 1.11c as this is used to

capture that the other agents do not know which coin position A believes to be true.

Finally, Figure 1.11d is derived following the public announcement semantics

presented in Section 1.4.1. We can see how the final e-state (Figure 1.11d) respects

the given goal, i.e., BA(heads) ∧ BB(heads) ∧ BC(heads).

Let us remember that this paragraph is supposed to only provide an introduction

to the field of Multi-agent Epistemic Planning. We will explore more in detail these

concepts later, when we will present the contributions of this thesis.

1.4.3 Complexity Overview

Finally, as the last note on MEP, we will summarize the complexity results in the

epistemic logic and in the epistemic planning fields. We will not present details

on such results as we introduced them only to provide the reader with a general

idea on “how hard” the problem of reasoning on information change is.

36 1.4. Multi-agent Epistemic Planning

Let us start by providing some basic notions that we will use throughout this

paragraph in Definitions 1.16 to 1.18.

Definition 1.16: Satisfiability of a Formula

Given a formula φ, φ is satisfiable if it is possible to find an interpretation, in
our case an e-state, that makes the formula true.

Definition 1.17: Model Checking of a Formula

Given a formula φ and a model M (in our case an e-state), the model checking
problem consists in determining if φ is true in M .

Definition 1.18: Plan Existence Problem

The plan existence problem consists of determining, if it exists, a solution, as
defined in definition 1.6, for a planning domain D.

These definitions identify the problems of interest when planning on beliefs.

Assuming that we make use of Kripke structures—other representations have the

same results—to represent the e-states then: (i) Definition 1.16 is the problem

of verifying whether there exists or not a Kripke structure that entails a formula;

(ii) Definition 1.16 identifies the entailment of a formula over a given a Kripke

structure; and (iii) Definition 1.16 represents the complete planning process. This

means that identifying the complexity of these problems will allow us to characterize

the MEP domain and provide us with a rough idea of how intricate is to tackle this

setting. We now present a series of results that summarize the complexity of the

aforementioned problems (Proposition 1.1, Tables 1.2 and 1.3). All the presented

results are derived by Fagin et al. [1995], Bolander et al. [2015].

Proposition 1.1: Model Checking Complexity [Fagin et al., 1995]

There is an algorithm that, given a pointed Kripke structure (M,w), and a
formula φ ∈ LC

AG, determines, in polynomial time O(||M || × |φ|) whether
(M,w) |= φ, where ||M || = |M [W]| + ∑︁n

i=0 |M [i]| with i ∈ AG, and |φ| is the
number of nested operators in φ.

1. Introduction & Preliminaries 37

SAT Complexity Epistemic logic
NP-complete S51, KD451

PSPACE-complete S5n, KD45n with n ≥ 2
EXPTIME-complete S5C

n , KD45C
n with n ≥ 2

Table 1.2: Complexity of the satisfiability problem with respect to the underlying Kripke
structure constraints [Fagin et al., 1995].

Let us note that to analyze the plan existence problem we need to categorize

action types into four distinct subsets. Depending on which subset an action type

belongs to, the action type itself impacts differently the e-state update. This

means that certain subsets of action types may increase the complexity of the plan

existence problem (as we can see in Table 1.3) when taken into consideration. In

MEP, as we will see in more detail in Chapter 2, the actions are often represented

through graphs. These action-graphs may collapse in more “simple” data structures,

i.e., singletons, chains, or trees, for some actions and that is what makes that

action part of a subset rather than another.

In particular, Bolander et al. [2015] distinguish between three different types

of action-structures:

• singletons: that corresponds to public announcements of propositional facts;

• chains and trees: that corresponds to different types of private announcements;

and

• graphs: that capture any propositional epistemic actions.

Moreover, for each one of these classes of structures, Bolander et al. analyze

the complexity for the plan existence problem considering also the effects and

preconditions expressive power:

• non-factual actions (changing only beliefs) with propositional preconditions;

• factual actions (changing beliefs and fluents) with propositional preconditions;

and

• factual actions with epistemic preconditions.

38 1.4. Multi-agent Epistemic Planning

Underlying Effects/Preconditions types
Action Non-Factual Factual Factual

Structure Propositional Propositional Epistemic
Singleton

NP-complete
[Bolander et al., 2015]

PSPACE-hard
[Jensen, 2014]

PSPACE-hard
[Jensen, 2014]

Chain

NP-complete
[Bolander et al., 2015]

Open
Question

Open
Question

Tree
PSPACE-complete

[Bolander et al., 2015]
Open

Question
Open

Question

Graph

EXPSPACE
[Bolander et al., 2015]

NON-Elementary
[Yu et al., 2013]

Undecidable
[Bolander and Andersen, 2011]

Table 1.3: Complexity of the plan existence problem [Bolander et al., 2015].

In Table 1.3 the complexity of the plan existence problem, depending on the

action type and on the underlying action structure, is summarised. As expected, the

complexity of the problem increases as we loosen the restrictions on the underlying

structure. Unfortunately, we are interested in the subset of actions that are

represented through graphs without restrictions and that have factual epistemic

preconditions (the right-bottom cell of Table 1.3). While these results are on a

general Kripke structure, i.e., not constrained by any S5 axiom, Bolander et al.

[2015] show that even the plan existence problem on S5n-states (more limited

than KD45n-states, in which we are mostly interested) is reducible to the halting

problem that it is well known to be undecidable.

[...] the (unobserved) past, like the future, is indefinite
and exists only as a spectrum of possibilities.

— Stephen Hawking
The Grand Design

[Hawking and Mlodinow, 2010]

2
Possibilities-Based MEP Action Language

Contents
2.1 Background . 39

2.1.1 The Epistemic Action Language mA∗ 40
2.1.2 Possibilities . 49

2.2 The Epistemic Action Language mAρ 55
2.2.1 The Language Specification 56
2.2.2 The Language Properties 59
2.2.3 mA∗ and mAρ Comparison 60

2.1 Background

While in Chapter 1 we presented a general introduction of the topics of this thesis,

in this section we will explore in more detail the concepts that are required to

describe the first contribution of our work, i.e., the multi-agent epistemic action

language mAρ. We will start in Section 2.1.1 where we will present the MEP action

language mA∗ [Baral et al., 2015, Le et al., 2018, Baral et al., 2022], which has

served as the foundation for our work. In Section 2.1.2 we will, then, introduce the

theory of non-well-founded sets [Aczel, 1988] that is required to better understand

the data structure that is used as a basis for mAρ. Finally, again in Section 2.1.2,

we will define formally the aforementioned data structure, referred to as possibility

39

40 2.1. Background

in literature [Gerbrandy and Groeneveld, 1997, Gerbrandy, 1999], highlighting

important properties that make it well-suited for representing e-states.

2.1.1 The Epistemic Action Language mA∗

With the introduction of the classical planning problem, languages for representing

actions and their effects were also proposed [Fikes and Nilsson, 1971]. These

languages are referred to as action languages [Gelfond and Lifschitz, 1998].

Over the years, several action languages for single-agent scenarios (e.g., STRIPS

[Fikes and Nilsson, 1971], ADL [Pednault, 1994] and SAS+ [Bäckström, 1995])

have been developed providing the foundation for several successful approaches

to automated planning. The effort of defining languages for classical planning

domains culminated in the well-known Planning Domain Description Language

(PDDL) [McDermott et al., 1998, Fox and Long, 2003] that standardized the

notations and that is routinely adopted by planners. Nonetheless, as said by Baral

et al. [2015]: “in single-agent domains, reasoning about actions and change mainly

involves reasoning about what is true in the world, what the agent knows about

the world, how the agent can manipulate the world (using world-changing actions)

to reach particular states, and how the agent (using sensing actions) can learn

unknown aspects of the world.”

On the other hand, multi-agent epistemic domains—the type of domain we are

considering—need more careful consideration when it comes to actions effects. In

particular, a MEP action language should be able to model how actions affect both

the environment and the agents’ beliefs (about the environment or others’ beliefs).

Similarly, the description of the states (be it an initial or a goal state) may involve

the agents’ beliefs. Few studies directly address the challenges derived by domains

in which information flows must be taken into consideration.

To the best of our knowledge, two works, i.e. Baral et al. [2015] and Muise

et al. [2015], firstly tackled the problem of providing formal action languages for

Multi-agent Epistemic Planning domains. In particular, in this section, we will

2. Possibilities-Based MEP Action Language 41

illustrate mA∗ [Le et al., 2018, Baral et al., 2022]1—the evolution of the language

mA+ provided by “An Action Language for Multi-Agent Domains: Foundations”

by Baral et al. [2015]—as it is the foundation of our newly introduced language mAρ.

We decided to develop a language starting from mA∗, rather than PDKB-

PDDL [Muise et al., 2015], because of the nature of the planning process employed

by the planners related to these languages. In fact, we thought that mA∗ to be more

in line with our objective of defining a comprehensive epistemic environment that

reasons on the full extent of LC
AG. While both planners can achieve these results,

mA∗ plans on a search space where each state is effectively a complete e-state, while

PDKB-PDDL makes use of a conversion into classical planning. Intuitively, the

latter transforms e-states properties into classical states to obtain a faster solving

process but renouncing to reason on “full-fledged” epistemic models. We, therefore,

preferred to define a system that, even if with a more resource-heavy procedure, is

able to reason and update complete e-states representation, e.g., Kripke structures.

Before formally introducing mA∗ we need to provide some notations that are

paramount to describe the language semantics. This introduction is supposed to

provide the reader with enough information to understand, at an intuitive level,

the characteristics of mA∗ and, therefore, does not provide all the details of the

language. For a complete analysis of the language, we address the interested reader

to Baral et al. [2022] where mA∗ is extensively analyzed.

The first idea that is necessary to introduce is the notion of event model (also

called update model) [Baltag and Moss, 2004, Van Benthem et al., 2006]. In mA∗,

the event models are used to define how the execution of actions impacts an e-state,

that is, they provide a formal way of defining how an action execution updates

the epistemic states. Let us now define the concept of update models, along with

the idea of substitution (necessary to define update models).

1Let us note that we will use Baral et al. [2015] and Baral et al. [2022] as main references for
mA∗ as they define its syntax and semantics exhaustively. In fact, Le et al. [2018] only illustrate
the additions to the language with respect to mA+ redirecting the readers to Baral et al. [2015]
for further information on the language.

42 2.1. Background

Definition 2.1: LC
AG-substitution [Baral et al., 2015]

Let LC
AG be a language defined over a set AG of n agents and a set F of k

fluents. An LC
AG-substitution is a set {f1 → φ1, . . . , fk → φk}, where each fi

is a distinct proposition in F and each φi ∈ LC
AG. We will implicitly assume

that for each f ∈ F \ {f1, . . . , fk}, the substitution contains f→ f. SUB(F ,AG)
denotes the set of all LC

AG-substitutions.

Definition 2.2: Event Model [Baral et al., 2015]

Given a language LC
AG, defined over a set AG of n agents and a set F of k

fluents, an event model Σ is a tuple ⟨E , Q, pre, sub⟩ where:

• E: is a set, whose elements are called events;

• Q: AG → 2E×E assigns an accessibility relation to each agent i ∈ AG;

• pre: E → LC
AG is a function mapping each event e ∈ E to a formula in

LC
AG; and

• sub: E → SUB(F ,AG) is a function mapping each event e ∈ E to a
substitution in SUB(F ,AG).

The idea behind event models is to provide a way to formally define an action

that can correctly alter the underlying e-state representation (let us imagine a

Kripke structure). Definition 2.3 illustrates how the information encoded in an

update model (Figure 2.1b) is used to obtain the correct e-state update.

Definition 2.3: Update by Event Models [Baral et al., 2022]

Let (Σ, γ) be an update template, where Σ = ⟨E , Q, pre, sub⟩ is an event model
and γ ∈ E , and lrt (M,w) be an epistemic state. The execution of (Σ, γ) in
(M,w) results in an epistemic state (M ′,w) = (M,w)⊗ (Σ, γ), where:

• M ′[W] = {(t, e) ∈M [W]× E | (M, t) |= pre(e)};

• M ′[w] = (M [w], γ);

• ((t1, e1), (t2, e2)) ∈ M ′[i] iff (t1, e1), (t2, e2) ∈ M ′[W], (t1, t2) ∈ M [i] and
(e1, e2) ∈ Q;

• For all (w, e) ∈M ′[W] and f ∈ F , M ′[π]((w, e)) |= f iff f→ φ ∈ sub(e)
and (M,w) |= φ.

2. Possibilities-Based MEP Action Language 43

opened
haskey_A
heads

opened
haskey_A

{A, B, C}{A, B, C} {A, B, C}

(a) The e-state that represents the configuration where the box is opened

σ τ

{B, C}{A, B, C} {A, B, C}
pre: heads
∧ opened

pre: ¬heads
∧ opened

(b) The representation of the update template (Σ, σ) relative to peek⟨A⟩.
The substitutions are not indicated as they are equal to ∅.

opened
haskey_A
heads

opened
haskey_A

{B, C}{A, B, C} {A, B, C}

(c) The updated e-state after the execution of peek⟨A⟩.

Figure 2.1: The execution of an action instance through the application of Definition 2.3.

Let us note that, for simplicity, we assume that the event of interest, i.e., γ, is

exactly one and that the given e-state has one pointed world. These restrictions

do not affect the definition of the language’s properties needed in our introduction.

Nonetheless, having a single-pointed world at each step means that the planning

process implicitly discards the idea of executing conformant planning (where multiple

unknown initial states should be kept into account). Since the language envisioned

by Baral et al. is able to tackle also incomplete descriptions of the world, these

assumptions are relaxed in their work [Baral et al., 2022].

Multiple events in a single update model correspond to multiple degrees of

44 2.1. Background

observability; in particular Figure 2.1b represents the update model of the action

instance peek⟨A⟩, introduced in Planning Domain 1.5. Here, only agent A becomes

aware of the status of the coins, while the others learn that A knows the coin

position without knowing it themselves—this corresponds to partial observability.

We, therefore, have that the event σ corresponds to agent A learning the coin

status, while event τ represents the other agents being aware of the peeking

action. Figure 2.1 illustrates the result of applying the procedure described in

Definition 2.3, with the update template in Figure 2.1b, to the Kripke structure

that represents the state where the box is opened (Figure 2.1a) obtaining the

correctly updated e-state (Figure 2.1c).

In what follows, we will introduce the syntax and the semantics of mA∗ that will

make use of more complex event models and observability relations. Once again, we

will make use of the Coin in the Box domain. In particular, the example in Planning

Domain 2.1 is a more complete version of the ones present in the previous chapter.

Each one of the actions presented in Planning Domain 2.1 falls into one of the

three types distinguished by Baral et al. [2022]. In particular, these action types are:

• World-altering actions (also called ontic): used to modify certain properties

(i.e., fluents) of the world, e.g., the actions open or distract_X of Planning

Domain 2.1.

• Sensing action: used by an agent to refine her/his beliefs about the world,

e.g., the action peek of Planning Domain 2.1.

• Announcement action: used by an agent to affect the beliefs of other agents.

e.g., in Planning Domain 2.1 the action announce.

2. Possibilities-Based MEP Action Language 45

Planning Domain 2.1: Three Agents and the Coin in the Box

Three agents, A, B, and C, are in a room where in the middle there is a box.
The box has a lock that can only be opened with a key. Inside the box, there
is a coin that lies heads up. In the initial configuration of this domain we have
that everybody knows that:

• none of the agents know whether the coin lies heads or tails up;

• the box is locked;

• only agent A has the key;

• if an agent is attentive (identified by look_X with X ∈ {A,B,C}) she/he
is aware of the execution of the actions; and

• agents A and C are attentive while B is not.

Moreover, we have that each agent can execute one of the following actions:

• open: an agent, if she/he has the key, can open the box. This results in
all the attentive agents believing that the box is open, while the others
would not be aware of any change in the environment.

• peek: to learn whether the coin lies heads or tails up, an agent can peek
into the box, but this requires the box to be open. This will result in
the peeking agents believing the coin position while the other attentive
agents are aware of this without knowing the coin position themselves.

• announce: this will result in all the listening (i.e., attentive) agents to
believe that the coin lies heads or tails up depending on the announced
value. As before, for our configuration, this action is only executable by
an agent who believes the coin position to be heads.

• distract_X/signal_X: these actions will make an attentive agent X
no more attentive or vice-versa, respectively.

Finally, in the desired configuration, A would like to know whether the coin
lies heads or tails up. She/He would also like to make agent B aware of this
fact. However, A would like to keep this information secret from C.

A series of action instances—that is, a plan—to achieve the goal may be
(1) distract_C⟨A⟩: to distract C from looking at the box; (2) signal_B⟨A⟩:
to tell B to look at the box; (3) open⟨A⟩: to open the box; and (4) peek⟨A⟩:
to make A peek into the box.

Given a domain D, an action instance a ∈ D(AI), a fluent literal f ∈ D(F),

a fluent formula ϕ ∈ LC
AG and a belief formula φ ∈ LC

AG, where LC
AG is defined

46 2.1. Background

Action type Full observers Partial Observers Oblivious
World-altering

Sensing
Announcement

Table 2.1: Action types and observability relations Baral et al. [2015].

over D(AG) and D(F), we can “briefly” introduce the syntax adopted in mA∗.

Executability conditions are captured by statements of the form:

executable a if φ;

for ontic actions we have:

a causes f if φ;

sensing actions statements have the form expressed by:

a determines f;

finally, announcement actions are expressed as follows:

a announces ϕ.

In multi-agent domains, the execution of an action might change or not the beliefs

of an agent. This is because, in such domains, each action instance associates an

observability relation to each agent. For example, agent C—that becomes oblivious

after being distracted by A—is not able to see the execution of the action open⟨A⟩.

On the other hand, any agent who is watching a sensing or an announcement action

can change her/his beliefs; e.g., agent B, who is watching agent A sensing the status

of the coin, will know that A knows the status of the coin without knowing it

her/him-self. Table 2.1 summarizes the possible observability relations for each

type of action. Partial observability for world-altering action is not admitted as,

whenever an agent is aware of the execution of an ontic action, she/he must know

its effects on the world as well. To indicate the set of agents that belong to the

Full, Partial, and Oblivious observers we will use F, P, and O, respectively. The

2. Possibilities-Based MEP Action Language 47

idea of observability is captured in mA∗ with specific statements. In particular, to

state that an agent i is Fully observant, with respect to an action a, it is used:

i observes a if φ;

while to identify an agent i as Partially observant, with respect to an action a, it is

used:

i aware_of a if φ.

Notice that if we do not state otherwise, an agent will be considered oblivious.

Finally, statements of the form

initially φ;

and

goal φ

capture the initial and goal conditions, respectively.

The core of the language semantics is the transition function, and as already

mentioned, it is defined using the concept of update models. In Figure 2.2a,

Figure 2.2b, and Figure 2.2c we illustrate the update templates for ontic, sensing,

and announcement actions, using open⟨A⟩, peek⟨A⟩, announce⟨A⟩, respectively.

The starting state is the one where A and B are attentive while C is not. That is,

we can see A as representative for the fully observant, B as partially observant, and

C as oblivious. For the sake of the presentation let us assume that B is partially

observant also for the announcement action execution.

Finally, we can define the mA∗ transition function Φ. Let (M,w) be an e-state

and let a ∈ D(AI). The result of executing a on (M,w) is the e-state, denoted

by Φ(a, (M,w)) defined as follow:

• If a is not executable in (M,w) then Φ(a, (M,w)) = ∅

• If a is executable in (M,w) and (Σ, σ) is the representation of the occurrence

of a on (M,w) then (M ′, w) = (M,w)⊗ (Σ, σ).

For more details and examples we address, once again, the reader to Baral et al.

[2022].

48 2.1. Background

σ ϵ
{C}{A, B} {A, B, C}

pre:
haskey_A

pre: ∅

(a) The update template (Σ, σ) of the ontic action instance open⟨A⟩.
The substitution in σ intuitively add the fluent haskey_A, and
removes its negation. In ϵ the substitution is equal to ∅.

σ
{C}{A, B}

pre: heads

τ

ϵ

{C}{A, B}

{A, B, C}

pre: ¬heads

pre: ∅
{B}

(b) The update template (Σ, σ) of the sensing action instance
peek⟨A⟩. The substitutions are equal to ∅.

σ
{C}{A, B}

pre: heads

τ

ϵ

{C}{A, B}

{A, B, C}

pre: ¬heads

pre: ∅
{B}

(c) The update template (Σ, σ) of the announcement action instance
announce⟨A⟩. For the sake of the presentation we assume B to be
partially observant. The substitutions are equal to ∅.

Figure 2.2: Examples of update templates for each action type described by Baral et al.
[2022].

2. Possibilities-Based MEP Action Language 49

0 1 2 3

(a) Pictures of von Neumann ordinals where 0 =
∅; 1 = {∅}; 2 = {∅, {∅}}; 3 = {∅, {∅}, {∅, {∅}}}.

3

2
1

210

0

(b) Alternative Pictures of von
Neumann ordinals 2 and 3.

Figure 2.3: Well-founded sets represented through graphs [Aczel, 1988].

2.1.2 Possibilities

We are now ready to define the concept of possibility (originally introduced by Ger-

brandy and Groeneveld [1997]). This section aims to provide the reader with enough

information to understand what possibilities are, without providing all the details

behind this topic. More on possibilities can be found in the works by Gerbrandy and

Groeneveld [1997], Gerbrandy [1999], while we refer the reader to Aczel [1988] for a

complete introduction on non-well-founded set theory and to Dovier [2015] for an

introduction of non-well-founded sets and their equivalence in logic programming.

Non-well-founded Set Theory Fundamentals Let us start by giving some

fundamental definitions of set theory. According to Aczel [1988], a well-founded

and a non-well-founded set are defined as follows:

Definition 2.4: Well-founded Set

Let E be a set, E ′ one of its elements, E ′′ any element of E ′, and so on. A
descent is the sequence of steps from E to E ′, E ′ to E ′′, etc. . . . A set is
well-founded (or ordinary) when it only gives rise to finite descents.

Definition 2.5: Non-well-founded Set [Aczel, 1988]

A set is non-well-founded (or extraordinary) when among its descents there
are some which are infinite.

All sets, in the sense of Definition 2.4, can be represented in the form of graphs,

called pictures, as shown in Figure 2.3. The concept of picture of a set is introduced,

alongside the definition of decoration, in Definition 2.6.

50 2.1. Background

(a) Standard picture Ω. (b) Unfolding of the picture of Ω.

Figure 2.4: Representation of the non-well-founded set Ω = {Ω} [Aczel, 1988].

Definition 2.6: Decoration and Picture

• A decoration of a graph G = (V,E) is a function δ that assigns to each
node n ∈ V a set δn in such a way that the elements of δn are exactly the
sets assigned to successors of n, i.e., δn = {δn′ | (n, n′) ∈ E}. Therefore,
the edges denote the membership relations.

• If δ is a decoration of a pointed graph (G, n), then (G, n) is a picture of
the set δn.

These concepts are essential to investigate the differences between well-founded

and non-well-founded set theories. We know that in well-founded set theory,

it holds Mostovski’s lemma: “each well-founded graph2 is a picture of exactly

one set” [Mostowski, 1949]. On the other hand, when the Foundation Axiom,

expressed by Gerbrandy [1999] as “Only well-founded graphs have decorations”, is

substituted with the Anti-Foundation Axiom (AFA), expressed by Aczel [1988]

as “Every graph has a unique decoration”, the following consequences become true:

• every graph is a picture of exactly one set (AFA as is formulated by Gerbrandy

[1999]);

• non-well-founded sets exist given that a non-well-founded pointed graph has

to be a picture of a non-well-founded set.

Aczel [1988], Gerbrandy [1999] point out how non-well-founded sets can also be

expressed through systems of equations. This concept will help us to formalize the

notion of state in our action language mAρ. A quick example of this representation

can be derived by the set Ω = {Ω} (Figure 2.4). We can informally define this set
2A well-founded graph is a graph that doesn’t contain an infinite path n→ n′ → n′′ → . . . of

successors.

2. Possibilities-Based MEP Action Language 51

as the (singleton) system of equations x = {x}. Systems of equations and their

solutions are described more formally in Definition 2.7.

Definition 2.7: System of Equations [Gerbrandy, 1999]

For each class of atoms, i.e., objects that are not sets and have no further
set-theoretic structure, X a system of equations in X is a class τ of equations
x = X, where x ∈ X and X ⊆ X , such that τ contains exactly one equation
x = X for each x ∈ X . A solution to a system of equations τ is a function δ
that assigns to each x ∈ τ(X)a a set δx such that δx = {δy | y ∈ X}, where x = X
is an equation of τ . If δ is the solution to a system of equations τ , then the set
{δx | x ∈ τ(X)} is called the solution set of that system.

aτ(X) denotes the class of atoms X in which τ is described.

Since both graphs and systems of equations are representations for non-well-

founded sets, it is natural to investigate their relationships. In particular, it is

interesting to point out how from a graph G = (V,E) it is possible to construct a

system of equations τ and vice versa. The nodes in G, in fact, can be the set of atoms

τ(X) and, for each node v ∈ V , an equation is represented by v = {v′ | (v, v′) ∈ E}.

Since each graph has a unique decoration, each system of equations has a unique

solution. Nonetheless, different graphs can represent the same set, and the notion

that can help to identify this equivalence is known as bisimulation.

Bisimulation As mentioned before the idea of bisimulation can be exploited to

characterize graphs, and therefore Kripke models, with “the same behavior”. In

particular, it can be proved that there is a unique minimum graph bisimilar to a

given one, and it can be found by computing the maximum bisimulation. Bisimilar

labeled graphs (or Kripke structures) have therefore a unique solution as well since

we collapse their representations into the minimal one. While this topic is of the

utmost importance in modal logic, and has been studied and used in several fields,

it is not the aim of this thesis to study it in depth. Let us, therefore, only provide

some basic notions referring the interested readers to much more complete works

such as Gerbrandy [1999], Bolander et al. [2015], Dovier [2015]. In particular,

Definition 2.8 formally introduces the concepts of bisimulation and Figure 2.5

52 2.1. Background

A,B

C
w0 w1 t0

t1

t2

A

B

C

C

f

f

f

g
g

Figure 2.5: In Figure are represented two different pointed Kripke structures (M1, w0)
(left) and (M2, t0) (right). It is easy to see that these two Kripke structures are structurally
different but bisimilar since there exists a relation {(w0, t0), (w1, t1), (w1, t2)} that is a
bisimulation [Riouak, 2019].

presents a graphical example of such concept. Finally, Corollary 2.1 states how the

concept of entailment and bisimulation are intertwined in Kripke structures.

Definition 2.8: Bisimulation [Bolander et al., 2015]

Given two pointed Kripke structures (M1,w0) and (M2, t0) let W = M1[W]
and T = M2[W], and let F be a set of propositional variables. The relation
R ⊆ W×T is a bisimulation if and only if for all w ∈ W and t ∈ T, if (w, t) ∈ R
then:

• Atom: w |= f ⇐⇒ t |= f, for all f ∈ F ;

• Forth: For all w′ such that (w,w′) ∈ M1[B] there exists a t′ such that
(t, t′) ∈M2[B] and (w′, t′) ∈ R;

• Back: For all t′ such that (t, t′) ∈ M2[B] there exists a w′ such that
(w,w′) ∈M1[B] and (t′,w′) ∈ R;

Two pointed Kripke structures (M1,w0) and (M2, t0) are bisimilar, indicated
with (M1,w0) ≃ (M2, t0), if and only if there exists a bisimulation between M1
and M2 such that (s0, t0) ∈ R.

Corollary 2.1: Truth in Bisimilar Kripke Structures

Given two pointed Kripke structures (M1,w0) and (M2, t0) and a language LC
AG,

we have that:

(M1,w0) ≃ (M2, t0) ⇐⇒ (∀φ ∈ LC
AG : (M1,w0) |= φ ⇐⇒ (M2, t0) |= φ).

2. Possibilities-Based MEP Action Language 53

Possibilities Let us now introduce the notion of possibility, following Gerbrandy

and Groeneveld [1997]:

Definition 2.9: Possibilities [Gerbrandy and Groeneveld, 1997]

Let AG be a set of agents and F a set of propositional variables:

• A possibility u is a function that assigns to each propositional variable
f ∈ F a truth value u(f) ∈ {0, 1} and to each agent i ∈ AG an information
state u(i) = σ.

• An information state σ is a set of possibilities.

In Section 2.2 we will use this concept to describe an epistemic state. The intuition

behind this is that a possibility u is a “possible” interpretation of the world and of

the agents’ beliefs. That is, u(f) specifies the truth value of the fluent f in u and

u(a) is the set of all the interpretations that agent a considers possible in u.

Moreover, a possibility can be represented as a decoration (Definition 2.6) of

a labeled graph and, therefore, as a unique solution to a system of equations for

possibilities (Definition 2.10), as shown in Figure 2.6. A possibility represents

the solution to the minimal system of equations in which all bisimilar systems

of equations are collapsed; namely, the possibilities that represent decorations of

bisimilar labeled graphs are bisimilar and can be represented by the minimal one.

This shows that the class of bisimilar labeled graphs and, therefore, of bisimilar

Kripke structures, used by mA∗ as e-states, can be represented by a single possibility.

Definition 2.10: System of Equations for Possibilities
[Gerbrandy, 1999]

Given a set of agents AG and a set of propositional variables F , a system of
equations for possibilities in a class of possibilities X is a set of equations such
that for each x ∈ X there exists exactly one equation of the form x(f) = b,
where b ∈ {0, 1}, for each f ∈ F , and of the form x(i) = X, where X ⊆ X , for
each i ∈ AG.
A solution to a system of equations for possibilities is a function δ that assigns
to each atom x a possibility δx in such a way that if x(f) = i is an equation
then δx(f) = i, and if x(i) = σ is an equation, then δx(i) = {δy | y ∈ σ}.

54 2.1. Background

w w′

v v′

A, B

A, B, C A, B, C

A, B

A, B, C

A, B

C C

C C

(a) Picture of w.




w = {(A, {w,w′}), (B, {w,w′}), (C, {v, v′}), f, g, h}
w′ = {(A, {w,w′}), (B, {w,w′}), (C, {v, v′}), g, h}
v = {(A, {v, v′}), (B, {v, v′}), (C, {v, v′}), f, h}
v′ = {(A, {v, v′}), (B, {v, v′}), (C, {v, v′}), h}

(b) System of equations of w.

Figure 2.6: Representation of a generic possibility w. The possibility is expanded for
clarity.

Finally, in Proposition 2.1, we show some interesting relations between labeled

graphs and possibilities, while in Proposition 2.2 we summarize important properties

that capture the relations between Kripke structures and possibilities.

Proposition 2.1: Labeled Graphs and Possibilities
[Gerbrandy and Groeneveld, 1997]

The relations between labeled graphs and possibilities are summarized as follows:

• each possibility can be pictured by a labeled graph;

• each labeled graph has a unique decoration;

• two labeled graphs have the same decoration if and only if are bisimilar.

Proposition 2.2: Kripke Structures and Possibilities

Given a Kripke structure (M,w), a possibility u, and a language LC
AG, we have

that:

• each pointed Kripke structure has exactly one set as its solution;

• two models are bisimilar if and only if they are the picture of the same
set; and

• If (M,w) is a picture of u, then for each φ ∈ LC
AG it holds (M,w) |=

φ ⇐⇒ u |= φ.

2. Possibilities-Based MEP Action Language 55

p

p, q

{A}
{A}

{B}

(a) A possibility.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(p) = 1 w(q) = 0
v(p) = 1 v(q) = 1
u(p) = 0 u(q) = 0
w(A) = {v} w(B) = {∅}
v(A) = {v} v(B) = {u}
u(A) = {∅} u(B) = {∅}

(b) Its system of
equation.

w

v

u
(c) The solution.

p,q

p

{B}

{A}

{A}

w

v

u

(d) The corresponding
Kripke structure.

Figure 2.7: An e-state represented through a possibility (a) and then converted to a
Kripke structure (d).

2.2 The Epistemic Action Language mAρ

The aforementioned idea of possibilities is central in mAρ. This language, instead

of using Kripke structures, exploits possibilities as e-states (Figure 2.7). That is,

mAρ, while keeping the same syntax of mA∗, changes the way of representing an

epistemic state. The modification of the underlying structure implies also a different

formalization of the transition function. This allowed us to define a new planning

environment that outperforms the state-of-the-art comprehensive epistemic planner

presented by [Le et al., 2018] by orders of magnitude in the experiments.

We will now briefly explain how a possibility can be used to represent an e-

state. The main idea is to identify with each possibility u both an interpretation

of the world and of each agent’s beliefs. That is, the component u(f) assigns a

truth value to the fluent f in u while u(i) represents the (non-well-founded) set

of possibilities that are considered by agent i.

The choice of possibilities over Kripke structures as e-state representation

provides several advantages. One of these is, as said by Gerbrandy and Groeneveld

[1997], that: “a possibility represents the solution to the minimal system of equations

in which all bisimilar Kripke structures are collapsed”. Intuitively, this means that

a class of bisimilar Kripke structures, that in mA∗ represents different e-states,

is easily represented by a single possibility and therefore, by a single e-state in

mAρ. That is, thanks to possibilities and the newly introduced transition function

56 2.2. The Epistemic Action Language mAρ

it has been possible to maintain e-states with smaller size, with respect to the

planner EFP 1.0 presented by Le et al. [2018], during the solving process. From a

more concrete point of view, implementing mAρ allowed us to work on e-states of

reduced dimension3 without having to rely on minimization techniques, such as the

algorithms presented by Paige and Tarjan [1987], Dovier et al. [2004], during the

solving process. Another advantage of using possibilities derives from their non-

well-founded aspect. Since a possibility is a non-well-founded graph, whose nodes

are themselves possibilities, the solving process can store each calculated possibility;

and, whenever needed, it can retrieve the stored possibilities to reuse them as “nodes”

inside a new e-state. To summarize, although possibilities and Kripke structures are

tightly connected (Figure 2.7), the advantages of using mAρ are: (i) the reduced

size of the e-states that does not depend on external procedures; and (ii) the fact

that possibilities can be stored and easily reused thanks to their non-well-founded

nature. In this sense, we can see possibilities as a more compact representation,

with respect to Kripke structures, that allows us to save computational resources.

2.2.1 The Language Specification

As the first main contribution, we present the language mAρ4. mAρ borrows

the syntax from mA∗ but changes the underlying e-state representation from

Kripke structures to possibilities. After rapidly introducing the concept of en-

tailment we will describe an improved transition function for mAρ along with

some important properties.

Let us start with the concept of entailment for possibilities. Definition 2.11

combines the concept of Gerbrandy [1999] with the action language mA∗.

3With respect to the e-states generated following mA∗.
4The original version of mAρ was presented by Fabiano et al. [2019]. Instead, here we will

introduce a newer version that maintains the same core while optimizing some details.

2. Possibilities-Based MEP Action Language 57

Definition 2.11: Entailment in Possibilities

Given, a fluent f, the belief formulae φ, φ1, φ2, an agent i, a group of agents α,
and a and a possibility u:

(i) u |= f if u(f) = 1;

(ii) u |= φ if φ is a fluent formula and u |= φ following the standard semantics
for ¬ and ∧;

(iii) u |= Bi(φ) if for each v ∈ u(i), v |= φ;

(iv) u |= ¬φ if u ̸|= φ;

(v) u |= φ1 ∧ φ2 if u |= φ1 and u |= φ2;

(vi) u |= Eαφ if u |= Bi(φ) for all i ∈ α;

(vii) u |= Cα(φ) if u |= Ek
αφ for every k ≥ 0, where E0

αφ = φ and Ek+1
α φ =

Eα(Ek
αφ).

We are now ready to introduce the transition function. This new transition

function is,in our opinion, more compact and therefore, more approachable than

the one introduced by Le et al. [2018]. Moreover, the “simplicity” of the e-states

update formalization is reflected in a much cleaner and faster implementation, as

we will see in Chapter 5. Let a domain D, its set of action instances D(AI), and

the set S of all the possibilities reachable from D(φini) with a finite sequence of

action instances be given. Moreover let us identify the observability groups F, P,

and O with respect to an action instance a with Fa, Pa, and Oa, respectively. The

transition function Φ : D(AI)× S → S ∪ {∅} for mAρ relative to D is formalized

following Definition 2.12.

Definition 2.12: mAρ transition function

Allow us to use the compact notation u(F) = {f | f ∈ D(F) ∧ u |= f} ∪ {¬f |
f ∈ D(F) ∧ u ̸|= f} for the sake of readability. Let an action instance a
∈ D(AI), a possibility u ∈ S and an agent i ∈ D(AG) be given. If a is not
executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

• Let us consider the case of an ontic action instance a. We then define u′

58 2.2. The Epistemic Action Language mAρ

such that:

e(a, u) = {ℓ | (a causes ℓ) ∈ D}; and
e(a, u) = {¬ℓ | ℓ ∈ e(a, u)} where ¬¬ℓ is replaced by ℓ.

u′(f) =
⎧⎨⎩1 if f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

0 if ¬f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

u′(i) =

⎧⎪⎨⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Fa

• if a is a sensing action instance, used to determine the fluent f. We then
define u′ such that:

e(a, u) ={f | (a determines f) ∈ D ∧ u |= f}
∪{¬f | (a determines f) ∈ D ∧ u ̸|= f}

u′(F) = u(F)

u′(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Pa⋃︁
w∈u(i): e(a,w)=e(a,u)

Φ(a,w) if i ∈ Fa

• if a is an announcement action instance of the fluent formula ϕ. We then
define u′ such that:

e(a, u) =
⎧⎨⎩0 if u |= ϕ

1 if u |= ¬ϕ

u′(F) = u(F)

u′(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Pa⋃︁
w∈u(i): e(a,w)=e(a,u)

Φ(a,w) if i ∈ Fa

2. Possibilities-Based MEP Action Language 59

2.2.2 The Language Properties

The newly introduced transition function allowed us to reason about fundamental

properties that, as said by Baral et al. [2015], each multi-agent epistemic action

language should respect. In particular, each epistemic reasoner should ensure that:

• if an agent is fully aware of the execution of an action instance then her/his

beliefs will be updated with the effects of such action execution;

• an agent who is only partially aware of the action occurrence will believe that

the agents who are fully aware of the action occurrence are certain about the

effects of the actions; and

• an agent who is oblivious of the action occurrence will also be ignorant about

its effects.

Propositions 2.3 to 2.5 capture the concept of beliefs update and ensure that,

when satisfied, the action language can be soundly used for multi-agent epistemic

reasoning. For the sake of readability, their complete proofs are reported in

Appendix A.2. In the following, we will use p′ instead of Φ(a, p) when possible

to avoid unnecessary clutter.

Proposition 2.3: Ontic Action Properties

Assume that a is an ontic action instance executable in u s.t. a causes ℓ if ψ
belongs to D. In mAρ it holds that:

(1) for every agent x ∈ Fa, if u |= Bx(ψ) then u′ |= Bx(ℓ);

(2) for every agent y ∈ Oa and a belief formula φ, u′ |= By(φ) iff u |= By(φ);
and

(3) for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula φ, if
u |= Bx(By(φ)) then u′ |= Bx(By(φ)).

60 2.2. The Epistemic Action Language mAρ

Proposition 2.4: Sensing Action Properties

Assume that a is a sensing action instance and D contains the statement a
determines f. In mAρ it holds that:

(1) if u |= f then u′ |= CFaf;

(2) if u |= ¬f then u′ |= CFa¬f;

(3) u′ |= CPa(CFaf ∨CFa¬f);

(4) u′ |= CFa(CPa(CFaf ∨CFa¬f));

(5) for every agent y ∈ Oa and a belief formula φ, u′ |= By(φ) iff u |= By(φ);
and

(6) for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula φ, if
u |= Bx(By(φ)) then u′ |= Bx(By(φ)).

Proposition 2.5: Announcement Action Properties

Assume that a is a announcement action instance and D contains the statement
a announces φ. If u |= ϕ in mAρ it holds that:

(1) u′ |= CFaϕ;

(2) u′ |= CPa(CFaϕ ∨CFa¬ϕ);

(3) u′ |= CFa(CPa(CFaϕ ∨CFa¬ϕ));

(4) for every agent y ∈ Oa and a belief formula φ, u′ |= By(φ) iff u |= By(φ);
and

(5) for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula φ, if
u |= Bx(By(φ)) then u′ |= Bx(By(φ)).

Baral et al. [2015] show how the above-listed properties capture the concept of

update in an epistemic environment. Therefore, we consider the epistemic action

languages, that respect all of the aforementioned properties, to be correct with

respect to the knowledge/belief update. That is the case with both mA∗ and mAρ.

2.2.3 mA∗ and mAρ Comparison

Finally, for a clearer understanding on differences between the two languages, let us

show (i) the execution, on both mA∗ and mAρ, of the action instances sequence ∆;

2. Possibilities-Based MEP Action Language 61

distract_C⟨A⟩ open⟨A⟩ peek⟨A⟩
FD A, B, C A, B A
PD - - B
OD - C C

Table 2.2: Observability relations of the actions instances in ∆.

and (ii) a direct comparison of the number of worlds and edges created by mA∗

and mAρ when executing a sequence of action instances.

Plan Execution ∆ = distract_C⟨A⟩, open⟨A⟩, peek⟨A⟩ is the sequence that

leads to the desired goal in Planning Domain 2.1 if we assume that B is already

looking at the box. With this, we want to give a graphical explanation of both

the transition functions and state-space defined by the two languages (Figures 2.8

to 2.11). Each state in mA∗ will be represented by a Kripke structure while in mAρ

will be a possibility (expanded to its respective system of equations for clarity).

The observability relations of each action instance in ∆ are expressed in Table 2.2.

Assuming that α = {A, B, C}, then the initial state, based on a small variation

of Planning Domain 2.1 where we assume B to be already attentive, is defined

by the conditions:

• initially Cα(haskey_A) ∧ Cα(¬haskey_B) ∧ Cα(¬haskey_C)

• initially Cα(¬opened)

• initially Cα(¬Bi(heads) ∧ ¬Bi(¬heads)) for i ∈ α

• initially Cα(look_i) for i ∈ α

• initially heads

Finally, the goal of Planning Domain 2.1 is expressed with the following formulae:

BA(heads) ∧BA(BB((BA(heads) ∨BA(¬heads))))

BB(BA(heads) ∨BA(¬heads)) ∧ (¬BB(heads ∧ ¬BB(¬heads)))

BC([
⋀︂

i∈{A,B,C}
(¬Bi(heads) ∧ ¬Bi(¬heads))])

62 2.2. The Epistemic Action Language mAρ

{A, B, C}w0 w1

{A, B, C} {A, B, C}

M0[π](w0) = {look_i, haskey_A, heads}
M0[π](w1) = {look_i, haskey_A}
where i ∈{A,B,C}.

(a) The initial Kripke structure (M0, w0).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u = {(i, {u, u′}), look_i,

haskey_a, heads}
u′ = {(i, {u, u′}), look_i,

haskey_a}
where i ∈ {A,B,C}.

(b) The initial possibility u.

Figure 2.8: The initial state.

{A, B, C}p0 p1

{A, B, C} {A, B, C}

M1[π](p0) ={look_A, look_B, haskey_A, heads}
M1[π](p1) ={look_A, look_B, haskey_A}

(a) The Kripke structure (M1, p0), obtained after the
execution of distract_C⟨A⟩ in (M0, w0) (Figure 2.8a).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v = {(i, {v, v′}), look_A,

look_B, haskey_A, heads}
v′ = {(i, {v, v′}), look_A,

look_B, haskey_A}
where i ∈ {A,B,C}

(b) Possibility v, obtained after the execu-
tion of distract_C⟨A⟩ in u (Figure 2.8b).

Figure 2.9: Execution of distract_C⟨A⟩.

2. Possibilities-Based MEP Action Language 63

{A, B, C}p0 p1

{A, B, C} {A, B, C}

{A, B}q0 q1

{A, B} {A, B}

{C}

{C} {C}

{C}

M2[π](q0) ={look_i, haskey_A, opened, heads}
M2[π](q1) ={look_i, haskey_A, opened}

where i ∈{A,B}.

(a) The Kripke structure (M2, q0), obtained after the
execution of open⟨A⟩ in (M1, p0) (Figure 2.9a).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w = {(i, {w,w′}), (C, {v, v′}), look_i,

haskey_a, opened, heads}
w′ = {(i, {w,w′}), (C, {v, v′}), look_i,

haskey_a, opened}
where i ∈ {A,B} and v, v′, are the
possibilities of Figure 2.9b.

(b) Possibility w, obtained after the execution of
open⟨A⟩ in v (Figure 2.9b).

Figure 2.10: Execution of open⟨A⟩.

{A, B, C}p0 p1

{A, B, C} {A, B, C}

Br0 r1

{A, B} {A, B}

{C}

{C} {C}

{C}

M3[π](r0) ={look_i, haskey_A, opened, heads}
M3[π](r1) ={look_i, haskey_A, opened}

where i ∈ {A,B}.

(a) The Kripke structure (M3, q0), obtained after the
execution of peek⟨A⟩ in (M2, q0).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z = {(A, {z}), (B, {z, z′})(C, {v, v′}),

look_i, haskey_a, opened, heads}
z′ = {(A, {z′}), (B, {z, z′})(C, {v, v′}),

look_i, haskey_a, opened}
where i ∈ {A,B} and the possibilities
v, v′ are represented in Figure 2.9b.

(b) Possibility z, obtained after the execution of
peek⟨A⟩ in w (Figure 2.10b).

Figure 2.11: Execution of peek⟨A⟩.

64 2.2. The Epistemic Action Language mAρ

e-States Size Comparison To conclude, let us summarize, in Figure 2.12, the

difference in size of the e-states of created by mAρ and mA∗. This figure gives

an intuitive idea of how mAρ helps in reducing the e-state size and its relative

overhead. We note, in fact, that the size of the e-states, generated after ten

consecutive action instances execution, varies immensely between the one generated

by mAρ, that is comprised of 59 worlds and 291 edges, and the one produced

by mA∗ that has 1461 worlds and 8037 edges. Let us stress that with a smaller

e-state size is associated a faster solving process as we will show in the experimental

evaluation, later in this thesis (Chapter 5).

0 1 2 3 4 5 6 7 8 9 10

300

600

900

1,200

1,500

Executed actions

G
en

er
at

ed
wo

rld
s

mA∗

mAρ

(a) Worlds generated by mAρ and mA∗.

0 1 2 3 4 5 6 7 8 9 10

1,500

3,000

4,500

6,000

7,500

Executed actions

G
en

er
at

ed
ed

ge
s

mA∗

mAρ

(b) Edges generated by mAρ and mA∗.

Figure 2.12: Comparison between the number of worlds and edges generated by mAρ

and mA∗ on the Coin in the Box domain with a sequence of ten action instances.

Fidarsi è bene, non fidarsi è meglio.

To trust is good, not to trust is better.

— Italian proverb

3
Communication with Trust

Contents
3.1 Trust in mAρ . 65

3.1.1 un/mis-Trustworthy Announcement 66
3.1.2 Desired Properties . 74

3.2 Capturing Trust with Update Models 77
3.2.1 mA∗ un-Trustworthy Announcement 77
3.2.2 mA∗ mis-Trustworthy Announcement 79

3.1 Trust in mAρ

As already mentioned, multi-agent planning and epistemic reasoning have recently

gained attention from several research communities. Efficient autonomous systems

that can reason in these domains could lead to winning strategies in various fields

such as economy [Aumann et al., 1995], security [Balliu et al., 2011], justice [Prakken,

2013], politics [Carbonell Jr, 1978] and can be exploited by autonomous devices,

e.g., self-driving cars, that can control several aspects of our daily life. We already

explained why epistemic reasoners are not only interested in the state of the

world, but also in the knowledge/beliefs of the agents. Nonetheless, the existing

epistemic action languages [Bolander and Andersen, 2011, Muise et al., 2015, Baral

et al., 2015, Fabiano et al., 2020, Baral et al., 2022] are able to model several

65

66 3.1. Trust in mAρ

families of problems and study their information flows but cannot comprehensively

reason on aspects like trust, dishonesty, deception, and other subtle epistemic

concepts. To exploit epistemic reasoning in complex real-world scenarios it is,

then, necessary to introduce the aforementioned epistemic nuances in the formalism

used to express epistemic domains.

In this first section, we present an “expansion” of mAρ that allows us to formalize

the notion of Trust. We do so by introducing two new actions that model the

information exchange between agents when the idea of trust is involved:

(i) un-trustworthy announcement; and

(ii) mis-trustworthy announcement.

In particular, (i) un-trustworthy announcement formalizes the situation when the

untrusty agents will not change their beliefs about the world no matter what the

announcer says; and (ii) mis-trustworthy announcement captures the scenarios

where the announcer, when not trusted, is believed to have a systematic faulty

perception of the announced environment’s properties. This leads the untrusty

agents to believe the opposite of what has been announced.

3.1.1 un/mis-Trustworthy Announcement

We are now ready to provide a formal definition of the actions un-trustworthy

announcement and mis-trustworthy announcement. That is, an agent can or cannot

trust what another agent is telling her/him and act consequently. The expressions

i t_announces a if φ;

and

i m_announces a if φ;

express that the agent i is executing an un-trustworthy announcement or a mis-

trustworthy announcement, respectively.

In defining the actions let us consider a static and globally visible version of

“trust” that can be formalized with a simple function T : AG ×AG ↦→ {0, 1} and

that enriches the definition of MEP domain (Definition 3.1).

3. Communication with Trust 67

Definition 3.1: MEP Domain with Trust

A MEP domain with Trust is a tuple D = ⟨F ,AG,A, T , φini, φgoal⟩, where
the additional (with respect to Definition 1.15) element T contains the trust
relations between agents:

T (i, j) =
⎧⎨⎩1 if [j trust i]

0 otherwise

where i and j ∈ D(AG).

We will consider only the case where T is a static and globally visible function. Let

us notice that having T to be dynamic is easily achievable. In particular, we just

need to define how T may vary, e.g., making the function depending on some fluents

value. For the sake of simplicity, let us imagine T to be fixed and not dependent on

the plan execution. On the other hand, making T not globally visible—i.e., each

agent knows her/his own version of the trust function—is not straightforward. The

problem arises when two agents have different views of the same trust relation leading

to the generation of different e-states (i.e., each agent must preserve its separate

view of the domain). We leave the investigation of this scenario as future work.

To clarify the e-state update after the execution of the new actions we will

also present a graphical representation of the transition function application. The

examples of execution will be based on a variation of the Grapevine domain,

firstly introduced by Kominis and Geffner [2015], described later in Planning

Domain 3.1. Let us now provide a formal definition of e-state update of the

two new actions of mAρ.

un-Trustworthy Announcement

We can now introduce the transition function for an un-trustworthy announcement.

Intuitively, this action models an announcement where the listening agents can

or cannot trust the announcer. That is:

• the trusty agents will update their belief consistently with what has been

announced; and

68 3.1. Trust in mAρ

• the untrusty1 ones will maintain their beliefs about the world and will only

update their perspective on the beliefs of the trusty agents.

Let us recall that the sets Fa,Pa,Oa represent the set of fully observant, partially

observant, and oblivious agents with respect to the execution of an action instance

a⟨i⟩, respectively.

Let a domain D, its set of action instances D(AI), and the set S of all the

possibilities reachable from D(φini) with a finite sequence of action instances be

given. The transition function Φ : D(AI)× S → S ∪ {∅} for the un-trustworthy

announcement relative to D is presented in Definition 3.2. Intuitively, this transition

function allows, through the use of Υ and Ψ, to model the idea that the untrusty

agents maintain their beliefs while knowing that the trusty ones updated their point

of view of the “physical world” (and vice versa).

1The agents that are fully observant with respect to the announcement but that do not trust
the announcer.

3. Communication with Trust 69

Definition 3.2: mAρ un-Trustworthy Announcement

Allow us to use the compact notation u(F) = {f | f ∈ D(F) ∧ u |= f} ∪ {¬f |
f ∈ D(F) ∧ u ̸|= f} for the sake of readability. Let an action instance a⟨i⟩
∈ D(AI) where agent i ∈ D(AG) announces the fluent formula ϕ, an and a
possibility u ∈ S be given.
If a is not executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

e(a, u) =
⎧⎨⎩0 if u |= ϕ

1 if u |= ¬ϕ
u′(F) = u(F)

u′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(j) if j ∈ Oa⋃︁
w∈u(j)

Υ(a,w) ∪Ψ(a,w) if j ∈ Pa⋃︁
w∈u(j)

Υ(a,w) if j ∈ Fa ∧ e(a, u) = 1⋃︁
w∈u(j)

Ψ(a,w) if j ∈ Fa ∧ e(a, u) = 0

with Υ(a,w) = w′ such that

w′(F) = w(F)

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(j) if j ∈ Oa⋃︁
v∈w(j)

Φ(a, v) if j ∈ Pa⋃︁
v∈w(j)

Υ(a, v) if j ∈ Fa ∧ T (j, i) = 0⋃︁
v∈w(j):e(a,v)=1

Υ(a, v) if j ∈ Fa ∧ T (j, i) = 1

and Ψ(a,w) = w′ such that

w′(F) = w(F)

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(j) if j ∈ Oa⋃︁
v∈w(j)

Φ(a, v) if j ∈ Pa⋃︁
v∈w(j)

Ψ(a, v) if j ∈ Fa ∧ T (j, i) = 0⋃︁
v∈w(j):e(a,v)=0

Ψ(a, v) if j ∈ Fa ∧ T (j, i) = 1

for each agent j ∈ D(AG).

An Example of Execution As mentioned above, we will provide a graphical

representation of the newly introduced transition function. Let us remember that

70 3.1. Trust in mAρ

we will represent a possibility as a graph where the nodes correspond to the possible

worlds while the edges encode the beliefs of the agents. The thicker node represents

the pointed possibility. Moreover, to extract the point of view of the agents from

a graph we need to follow the entailment rules (Definition 2.11) starting from the

pointed possibility. In Planning Domain 3.1 we briefly describe the instance that

will be used as a running example. Since we are only interested in showing how to

e-state update works we will omit the actions and goal description.

Planning Domain 3.1: Trust-Grapevine

n ≥ 2 agents are located in k ≥ 2 rooms. Each agent knows j ≥ 0 secrets. An
agent can move freely to other rooms, and she/he can share a “secret” with the
agents that are in the room with her/him. Moreover, the agents will be aware
of the execution of announcements made in adjacent rooms without actually
knowing the truth value of the announced fluent. Each agent can or cannot
trust what another agent sharesa.

Our running example considers five agents: A, B, C, D, and E. Initially we
have that:

• A, B, C are located in the same room (room_1) while D is in a room
(room_2) adjacent to room_1 and E is located in room_3, not adjacent
to room_1;

• agents B and D trust A while C and E do not;

• only agent A knows secret_a;

• the value of secret_a is ⊤; and

• initially everyone knows the position of each agent and that only A knows
the value of secret_a.

In Figure 3.1 we present a graphical representation of the above described
initial state.

aLet us notice that since the idea of trust is involved, each agent, in order to learn a
secret, needs to witness an announcement of agents that she/he trusts, making the newly
presented domain slightly more intricate than the original Grapevine.

Figure 3.2 represents the e-state generated after the execution of the un-

trustworthy announcement action instance announce_secret_a⟨A⟩ (ann_a for

brevity). With ann_a, A announces the value of secret_a. Let us note that from

the position of the agents we know that A, B, C ∈ Fann_a, D ∈ Pann_a, and E ∈Oann_a.

3. Communication with Trust 71

Once again, from Figure 3.2, we can derive that B—a trusty fully observant—

believes secret_a to be true (⊤) while C—an untrusty fully observant—did not

change her/his direct belief about secret_a, but changed her/his beliefs on other

agents’, e.g., B, beliefs. More intricate relations, described in Proposition 3.1,

can also be derived from Figure 3.2.

s0 s1{B,C,D,E}{A,B,C,D,E} {A,B,C,D,E}

s0 secret_a, at_1_A, t_1_B, at_1_C, at_2_D, at_3_E
s1 at_1_A, t_1_B, at_1_C, at_2_D, at_3_E

Figure 3.1: The initial e-state described in Planning Domain 3.1. The bottom Table
presents the fluents interpretation of each possibility (as usual, only the positive fluents
are reported).

s0 s1{B,C,D,E}{A,B,C,D,E} {A,B,C,D,E}

t0 t1

{C,D}
{A,B,C,D}

u0 u1{C,D}
{A,B,C,D} {C,D}

{D}
{D} {D}

{D}

{A,B,C,D}

{C,D}
{A,B,C,D}

{E}

{E}

{E}

{E}

u0/t0/s0 secret_a, at_1_A, t_1_B, at_1_C, at_2_D, at_3_E
u1/t1/s1 at_1_A, t_1_B, at_1_C, at_2_D, at_3_E

Figure 3.2: The e-state obtained after executing the un-trustworthy announcement
action ann_a in the e-state represented in Figure 3.1.

72 3.1. Trust in mAρ

mis-Trustworthy Announcement

In Definition 3.2 we assumed that an agent j, when does not trust the announcer,

will not change her/his beliefs about what has been announced. That is, an untrusty

agent will not change her/his perspective on the “physical” state of the world. Let

us notice that this type of trust captures the idea that, for the untrusty agents,

the announcer is not reliable and the information she/he is providing is not worth

taking into consideration as it can be not accurate.

Depending on the scenario it could be necessary to model a stronger concept

of untrust. In particular, it could be required to design an un-trustworthy an-

nouncement such that the untrusty agents will believe the contrary of what has

been announced (while still believing that the announcer believes what she/he

announced). We will call this type of action mis-trustworthy announcement. The

formalization of such variation is presented in Definition 3.3.

Let us note that the transition functions introduced in Definition 3.2 and

Definition 3.3 only differ in the specification of Υ and Ψ for the untrusty fully

observant agents. This difference is needed to represent the fact that in the case of

an un-trustworthy announcement the untrusty agents maintain their beliefs while in

the mis-trustworthy one they will believe the opposite of what has been announced.

3. Communication with Trust 73

Definition 3.3: mAρ mis-Trustworthy Announcement

Let an action instance a⟨i⟩ ∈ D(AI) where agent i ∈ D(AG) announces the
fluent formula ϕ and a possibility u ∈ S be given.
If a is not executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

e(a, u) =
⎧⎨⎩0 if u |= ϕ

1 if u |= ¬ϕ
u′(F) = u(F)

u′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(j) if j ∈ Oa⋃︁
w∈u(j)

Υ(a,w) ∪Ψ(a,w) if j ∈ Pa⋃︁
w∈u(j)

Υ(a,w) if j ∈ Fa ∧ e(a, u) = 1⋃︁
w∈u(j)

Ψ(a,w) if j ∈ Fa ∧ e(a, u) = 0

with Υ(a,w) = w′ such that

w′(F) = w(F)

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(j) if j ∈ Oa⋃︁
v∈w(j)

Φ(a, v) if j ∈ Pa⋃︁
v∈w(j):e(a,v)=0

Υ(a, v) if j ∈ Fa ∧ T (j, i) = 0⋃︁
v∈w(j):e(a,v)=1

Υ(a, v) if j ∈ Fa ∧ T (j, i) = 1

and Ψ(a,w) = w′ such that

w′(F) = w(F)

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(j) if j ∈ Oa⋃︁
v∈w(j)

Φ(a, v) if j ∈ Pa⋃︁
v∈w(j):e(a,v)=1

Ψ(a, v) if j ∈ Fa ∧ T (j, i) = 0⋃︁
v∈w(j):e(a,v)=0

Ψ(a, v) if j ∈ Fa ∧ T (j, i) = 1

for each agent j ∈ D(AG).

An Example of Execution As for the un-trustworthy announcement, we will

provide an example of mis-trustworthy announcement execution. The initial state is

identical to the one introduced in Planning Domain 3.1 . The only difference is that

74 3.1. Trust in mAρ

now the action announce_secret_a⟨A⟩ (or ann_a for brevity) is a mis-trustworthy

announcement instead of an un-trustworthy announcement. The initial state is,

therefore, represented in Figure 3.1 while the e-state obtained after the execution of

the mis-trustworthy announcement is shown in Figure 3.3. From Figure 3.3, we can

extrapolate that B—a trusty fully observant—believes secret_a to be true (⊤)

while C—an untrusty fully observant—believes the opposite, i.e., secret_a = ⊥.

As for the previous actions, also for mis-trustworthy announcement more intricate

relations, described in Proposition 3.2, can also be derived from Figure 3.3.

s0 s1{B,C,D,E}{A,B,C,D,E} {A,B,C,D,E}

t0 t1

{C,D}
{A,B,D}

u0 u1{C,D}
{A,B,D} {C,D}

{D}
{D} {D}

{D}

{A,B,D}

{C,D}
{A,B,D}

{E}

{E}

{E}

{E}

u0/t0/s0 secret_a, at_1_A, t_1_B, at_1_C, at_2_D, at_3_E
u1/t1/s1 at_1_A, t_1_B, at_1_C, at_2_D, at_3_E

Figure 3.3: The e-state obtained after executing the mis-trustworthy announcement
action ann_a in the e-state represented in Figure 3.1.

3.1.2 Desired Properties

In Section 2.2.2 some useful properties that correctly capture certain intuitions

concerning the effects of the various types of actions in mAρ are listed. Similarly,

in what follows, we will provide some properties that the e-state update, after

executing the un/mis-trustworthy announcement, meets. In Appendix A.3 we

will show the formal proofs that these properties hold. As usual, we will indicate

the sets of partially observant and oblivious agents (with respect to the action

3. Communication with Trust 75

instance a⟨i⟩) with Pa and Oa, respectively. Moreover, we will indicate the set

of trusty fully observant agents with Fa while will indicate the set of untrusty

fully observant with Ua.

Proposition 3.1: un-Trustworthy Announcement Properties

Let a⟨i⟩ be an un-trustworthy announcement action instance where an agent i
t_announces ϕ. Let e be an e-state and let e′ be its updated version (that is,
Φ(a, e) = e′), then in mAρ it holds that:

(1) e′ |= CFaϕ;

(2) e′ |= CUa(CFaϕ);

(3) e′ |= CPa(CFaϕ ∨CFa¬ϕ);

(4) e′ |= CFa∪Ua(CPa(CFaϕ ∨CFa¬ϕ));

(5) for every agent y ∈ Oa and a belief formula φ, e′ |= By(φ) iff e |= By(φ);
and

(6) for every pair of agents x ∈ Fa∪Ua∪Pa and y ∈ Oa and a belief formula
φ, if e |= Bx(By(φ)) then e′ |= Bx(By(φ)).

(7) for every agent y ∈ Ua, e′ |= By(ϕ)/By(¬ϕ)/(¬By(ϕ) ∧ ¬By(¬ϕ)) iff
e |= By(ϕ)/By(¬ϕ)/(¬By(ϕ) ∧ ¬By(¬ϕ));

The properties presented in Proposition 3.1 capture some fundamental aspects of

an un-trustworthy announcement action. Intuitively:

(1) Captures the idea that all the trusty fully observant agents should believe

(i) what has been announced; and (ii) that all the other trusty fully observant

agents believe what has been announced and so on ad infinitum (that is why

we use the C operator).

(2) Models the fact that all the untrusty agents believe that all the trusty ones

have common belief of what has been announced.

(3) Captures that the partially observants believe that the trusty fully observants

have common knowledge of what has been announced while the partially

observants themselves do not know the announced value.

76 3.1. Trust in mAρ

(4) States that the fully observant agents have common knowledge of the previous

property.

(5) Captures the fact that the oblivious agents do not change their beliefs.

(6) States that the observant agents (trusty, untrusty, and partial) believe that

the oblivious agents did not change their beliefs.

(7) Models the idea that all the untrusty agents do not modify their beliefs about

the announced values.

As we did for the un-trustworthy announcement, let us identify some properties

also for the mis-trustworthy announcement action.

Proposition 3.2: mis-Trustworthy Announcement Properties

Let a⟨i⟩ be a mis-trustworthy announcement action instance where an agent i
m_announces ϕ. Let e be an e-state and let e′ be its updated version (that
is, Φ(a, e) = e′), then in mAρ Items (1) to (6) of Proposition 3.1 hold. In
addition,

(8) e′ |= CUa¬ϕ;

(9) e′ |= CFa(CUa¬ϕ);

(10) e′ |= CPa(CUaϕ ∨CUa¬ϕ);

Proposition 3.2 describes the core ideas behind a mis-trustworthy announcement

action. While Items (1) to (6) of Proposition 3.1 have already been described,

the intuitive meaning of the remaining ones is as follows.

(8) Captures the idea that all the untrusty fully observant agents should believe

(i) the contrary of what has been announced; and (ii) that all the other untrusty

fully observant agents believe the negation of what has been announced and

so on ad infinitum (that is why we use the C operator).

(9) Models the fact that all the trusty agents believe that all the untrusty ones

have common belief of the negation of what has been announced.

3. Communication with Trust 77

(10) Captures that the partially observants believe that the untrusty fully obser-

vants have common belief of what has been announced, while the partially

observant themselves do not know the announced value.

3.2 Capturing Trust with Update Models

Since most of the work in dynamic epistemic planning revolves around the concepts

of Kripke structures and update models, e.g., Bolander and Andersen [2011], Baral

et al. [2022], we believe that formalizing the aforementioned actions using these

concepts would provide interesting insights for the community. In this paragraph

we, therefore, succinctly present the update models that define the announcement

actions where the trust relation T is taken into consideration.

3.2.1 mA∗ un-Trustworthy Announcement

Let us begin by describing the update model related to the un-trustworthy an-

nouncement for the language mA∗. We will follow the scheme presented by Baral

et al. [2015, 2022] to introduce a new action’s update model. The transition function

is derived by applying the update model to a Kripke structure. Let us also recall

that the sets Fa,Pa,Oa represent the set of fully observant, partially observant, and

oblivious agents with respect to an action instance a⟨i⟩, respectively. Definition 3.4

presents formally the update model of an un-trustworthy announcement. Let us

notice that an update instance of an un-trustworthy announcement action occurrence

has five events to capture the idea of both updating the beliefs of the trusty agents

and maintaining the beliefs of the untrusty ones. Figure 3.4 provides a graphical

representation of this update template. Each event is associated with sets of states

and edges where the truth value of the announced fluent formula is either known

to be true, known to be false, or unknown.

78 3.2. Capturing Trust with Update Models

Definition 3.4: mA∗ un-trustworthy announcement Update Model

Let a⟨i⟩ be an un-trustworthy announcement action instance where agent
i announces the fluent formula ϕ with the precondition ψ, a function T :
AG × AG ↦→ {0, 1} and a frame of reference ρ = (Fa,Pa,Oa). The update
model for a, T , and ρ, ω(a, T , ρ), is defined by ⟨Σ,R1, . . . ,Rn⟩ where:

• Σ = {σ, τ, η, µ, ϵ};

• Rj is defined by:

Rj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(σ, σ), (τ, τ), (ϵ, ϵ)} if i ∈ Fa ∧ T (j, i) = 1

{(x, x′), (y, y′), (ϵ, ϵ)} if i ∈ Fa ∧ T (j, i) = 0
where x, x′ ∈ {σ, η} ∧ y, y′ ∈ {µ, τ}

{(x, y), (ϵ, ϵ)} if j ∈ Pa

where x, y ∈ {σ, τ, η, µ}

{(x, ϵ), (ϵ, ϵ)} if j ∈ Oa

where x ∈ {σ, τ, η, µ}

• The preconditions are are defined by:

pre(x) =

⎧⎪⎪⎨⎪⎪⎩
ψ ∧ ϕ if x ∈ {σ, µ}
ψ ∧ ¬ϕ if x ∈ {η, τ}
⊤ if x = ϵ

• sub is defined by sub(x) = ∅ for each x ∈ Σ.

• We identify σ as the pointed event.

The update instance for the un-trustworthy announcement action occurrence
a and the frame of reference ρ is (ω(a, T , ρ), {σ, τ, η, µ}).

3. Communication with Trust 79

σ η

µ τ

ϵ

{O}

{O}

{O}

{O}
{P}

{P}{P}
{P}

{U,P}

{U,P}

{U,P}

{U,P}

{F,U,P}

{F,U,P}

{F;U;P}

{F,U,P}

{F,U,P,O}

Figure 3.4: The update template (Σ, σ) for the un-trustworthy announcement. F, U,
P, O represent the trusty fully observant, untrusty fully observant, partially observant,
and oblivious agents respectively.

3.2.2 mA∗ mis-Trustworthy Announcement

Let us now introduce the transition function related to the mis-trustworthy an-

nouncement action. As before, we will follow the scheme of Baral et al. [2015,

2022] to introduce a new action’s update model, and the sets Fa,Pa,Oa represent

the set of fully observant, partially observant, and oblivious agents with respect

to an action instance a⟨i⟩, respectively.

Let us note that Definition 3.5 only varies, with respect to Definition 3.4, in the

behavior of Rj for the untrusty fully observant agents (i.e., j ∈ Fa ∧ T (j, i) = 0).

80 3.2. Capturing Trust with Update Models

Definition 3.5: mA∗ mis-trustworthy announcement Update Model

Let a⟨i⟩ be an mis-trustworthy announcement action instance where agent
i announces the fluent formula ϕ with the precondition ψ, a function T :
AG × AG ↦→ {0, 1} and a frame of reference ρ = (Fa,Pa,Oa). The update
model for a, T , and ρ, ω(a, T , ρ), is defined by ⟨Σ,R1, . . . ,Rn⟩ where:

• Σ = {σ, τ, η, µ, ϵ};

• Ri is defined by:

Rj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(σ, σ), (τ, τ), (ϵ, ϵ)} if i ∈ Fa ∧ T (j, i) = 1

{(η, η), (µ, µ), (ϵ, ϵ)} if i ∈ Fa ∧ T (j, i) = 0
where x, x′ ∈ {σ, η} ∧ y, y′ ∈ {µ, τ}

{(x, y), (ϵ, ϵ)} if j ∈ Pa

where x, y ∈ {σ, τ, η, µ}

{(x, ϵ), (ϵ, ϵ)} if j ∈ Oa

where x ∈ {σ, τ, η, µ}

• The preconditions are are defined by:

pre(x) =

⎧⎪⎪⎨⎪⎪⎩
ψ ∧ ϕ if x ∈ {σ, µ}
ψ ∧ ¬ϕ if x ∈ {η, τ}
⊤ if x = ϵ

• sub is defined by sub(x) = ∅ for each x ∈ Σ.

• We identify σ as the pointed event.

The update instance for the mis-trustworthy announcement action occurrence
a and the frame of reference ρ is (ω(a, T , ρ), {σ, τ, η, µ}).

The update template for mis-trustworthy announcement is presented in Figure 3.5.

3. Communication with Trust 81

σ η

µ τ

ϵ

{O}

{O}

{O}

{O}
{P}

{P}{P}
{P}

{U,P}

{U,P}

{U,P}

{U,P}

{F,P}

{F,P}

{F,P}

{F,P}

{F,U,P,O}

Figure 3.5: The update template (Σ, σ) for the mis-trustworthy announcement. F, U,
P, O represent the trusty fully observant, untrusty fully observant, partially observant,
and oblivious agents respectively.

82

People get built different. We don’t need to figure it
out, we just need to respect it.

— Princess Bubblegum
in “Bonnie and Neddy”

Adventure Time

4
Trust, Misconception, and Lies in MEP

Contents
4.1 Agents’ Attitudes and Inconsistent Beliefs 83

4.1.1 Enriched Domains . 85
4.2 Updated Transition Function 87

4.2.1 Examples of Actions Execution 92
4.2.2 Desired Properties . 99

4.3 Related Work . 100

4.1 Agents’ Attitudes and Inconsistent Beliefs

In the previous chapter, we presented a formalization for announcements when the

concept of trust is taken into consideration. While this introduction expands the

range of scenarios that mAρ may represent, it still does not fully capture aspects

like dishonesty, deception, and incongruent beliefs.

In this chapter, we further enrich the language mAρ with the concept of agents’

attitudes. Our idea of attitudes stems from the concept of dynamic attitudes

that “represent the agent’s assessment of the reliability of the source” introduced

by Rodenhäuser [2014]. We define basic attitudes that capture how an agent

reacts when another agent is informing her/him about something. In the real

world, in fact, it is often the case that we associate an idea of reliability with

83

84 4.1. Agents’ Attitudes and Inconsistent Beliefs

an information source. This work captures this idea by having agents behave

accordingly to the following attitudes: doubtful, impassive, trustful, mistrustful,

or stubborn (detailed descriptions are given later).

In addition to the agents’ relation with the information source, we also consider

the scenario when agents learn a fact that discords with their previous beliefs.

When such a discrepancy arises, we talk about inconsistent belief. Since, as said in

Chapter 2, we consider KD45n-states, inconsistencies are relative only to the beliefs

of an agent (and not to the actual world). Let us assume that agent i believes that

¬φ is the case in the e-state u (i.e., u |= Bi(¬φ)); in mAρ there are two main sources

of inconsistencies: (i) i observes the real world—performing a sensing action—and

learns φ (the opposite of what she/he believed); (ii) i learns φ as a result of an

announcement performed by another agent j. In both scenarios, we must account

for the belief of i after the action execution. In particular, the resulting e-state

u′ must be consistent with the axiom D of Table 1.1. In the former case, (i) we

resolve the inconsistency by having i believing φ; i.e., we make sure that u′ |= Bi(φ).

This is a reasonable solution, as we assume that agents trust their senses when

observing the world. In the latter, (ii) we must take into account the attitude of

the agent with respect to the announcer j. As said by Rodenhäuser [2014], “we

are not only interested in the acceptance of new information (based on trust), but

also in its rejection (based on distrust)”. For instance, the listener may be skeptical

or credulous, and thus she/he would change her/his belief according to her/his

attitude. Let us notice that inconsistent beliefs are different from false beliefs. An

agent has a false belief about a property φ if she/he believes φ to be true even if

such property does not hold in the actual world. False beliefs are already allowed

in mAρ as a result of the presence of oblivious agents in action instances.

Going back to the attitudes of agents, the notion of trust naturally arises. It

is reasonable to assume that the listener i believes the announcer j if i trusts j. In

particular, let us consider three attitudes1 for fully observant agents that listen

to an announcement: trustful, mistrustful, and stubborn. Trustful agents believe
1We only consider basics attitudes, we leave the exploration of more complex ones as future

work.

4. Trust, Misconception, and Lies in MEP 85

what the announcer tells them; mistrustful agents believe the opposite of what is

announced; and stubborn agents do not modify their beliefs. Considering the case

of semi-private announcements, we need to introduce the concept of attitude for

partially observant agents as well. Specifically, we consider impassive and doubtful

agents. Impassive agents keep their current beliefs, while doubtful agents believe

neither what is being announced nor the opposite, regardless of their previous

beliefs. Note that stubborn and impassive agents are different, as the former kind is

aware of what is being announced—i.e., the truth value of the property φ. Let us

note that such attitudes are named to capture our personal idea of the behavior

they represent and they are not meant to wholly describe the nuances of complex

social attitudes such as, for example, stubbornness.

When communicating with their peers, agents might announce something that is

false relative to their own point of view. We call lies such announcements. Similar

to the notion of inconsistent belief, the truthfulness of announcements depends on

the point of view of the announcer i—i.e., i truthfully announces φ iff u |= Bi(φ).

Introducing these novel concepts enriches mAρ in terms of what the actions

may describe/perform. The language can describe a much broader set of real-life

scenarios where different degrees of trust relations between agents are needed. In

summary, in this chapter we present, to the best of our knowledge, the first transition

function that can update an epistemic state—i.e., the knowledge/belief-graph of the

agents—when considering: (i) inconsistent beliefs, i.e., discrepancies between the

beliefs currently held by an agent and some new information that she/he acquires;

(ii) trust relations between agents; and (iii) the possibility for an agent to lie. In

the next section, we formally incorporate such features in the semantics of mAρ.

4.1.1 Enriched Domains

Let us start by providing some definitions necessary to introduce the updated

transition function for mAρ. In particular, let us formally introduce the idea

of frame of reference in Definition 4.1, the concept of attitude in Definition 4.2

and finally the MEP domain enriched with attitudes in Definition 4.3. In what

86 4.1. Agents’ Attitudes and Inconsistent Beliefs

follows, when clear from the context, we will make use of a to indicate the action

instance a⟨α⟩, with α ⊆ D(AG).

Definition 4.1: Frame of Reference [Baral et al., 2015]

The frame of reference of an action instance a⟨α⟩ is a partition ρa⟨α⟩ =
⟨Fa,Pa,Oa⟩ of the set D(AG), denoting the Fully observant, Partially obser-
vant, and Oblivious agents of a⟨α⟩, respectively.

The concept of attitude is strictly related to announcements. Therefore, in

what follows, a⟨α⟩ is assumed to be an announcement action. We recall that

announcement action instances are assumed to have a single executor (|α| = 1),

referred to as the announcer. In this case, we make use of the short notation

a⟨j⟩ in place of a⟨{j}⟩.

Definition 4.2: Attitude

The attitude of an agent determines how she/he updates her/his beliefs when
new information is announced. Attitudes induce a refined partition of the
frame of reference ρa⟨j⟩ = ⟨Fa,Pa,Oa⟩ as follows:

• Fa = {j} ∪ Ta ∪Ma ∪ Sa: fully observant agents may be the executor,
Trustful, Mistrustful, or Stubborn;

• Pa = Ia ∪Da: partially observant agents may be Impassive or Doubtful.

Attitudes are specified with mAρ statements of the form “has_attitude i wrt j

att if φ” (where att is one of the attitudes of Definition 4.2) and they define the

trust relations among agents. Such a statement asserts that i bears the attitude

att towards j if the condition φ is met. We assume that the attitudes of the agents

are publicly visible, except for the attitude that the announcer has with respect

to her/him-self. That is, the announcer knows whether she/he is being truthful,

lying or announcing something that she/he is unaware of, while other agents do

not. Instead, trustful and stubborn agents believe that the announcer is truthful

(i.e., they believe that the executor believes the announced property), whereas

mistrustful agents believe the announcer to be lying (i.e., they believe that the

announcer believes the negation of the announced property). In what follows we

4. Trust, Misconception, and Lies in MEP 87

assume this schema of trust with respect to the executor, although it can be easily

adapted to best represent different scenarios. Finally, we assume that the announcer

does not modify her/his own beliefs about the property being announced. The

considered attitudes provide agents with a simple set of possible behaviors. More

sophisticated attitudes can be built upon the ones introduced in Definition 4.2.

Definition 4.3: MEP Domain with Attitudes

A MEP domain with attitudes is a tuple D = ⟨F ,AG,A,AT , φini, φgoal⟩, where
the additional element AT contains the attitudes relations of agents:

AT = {(i, j, att, φ) | [has_attitude i wrt j att if φ]}.

4.2 Updated Transition Function

In this section, we provide a formalization of the transition function Φ of mAρ that

captures the aspects that we previously discussed in this section. Let a MEP domain

with attitudes D = ⟨F ,AG,A,AT , φini, φgoal⟩, an agent j ∈ D(AG), an e-state

u ∈ D(S), and an action instance a ∈ D(AI) be given. The frame of reference

ρa and the attitudes of the agents are determined by confronting the elements of

the attitudes relation AT with the possibility u. If a is not executable in u, then

Φ(a, u) = ∅. Otherwise, we distinguish between ontic and epistemic actions.

Ontic Actions Since ontic actions are not affected by the introduction of incon-

sistent beliefs, or attitudes, the previous formalization described in Definition 2.12

is maintained.

Epistemic Actions Sensing and announcement actions modify the beliefs of

agents. Since agents might acquire information that discords with previous beliefs,

we must resolve the discrepancies. In the case of sensing actions, we consider all

fully observant agents as executors. Since each agent trusts her/his senses, we have

Fa = Ta. Similarly, we assume partially observant agents to keep their beliefs about

88 4.2. Updated Transition Function

the physical features of the world unchanged, i.e., Pa = Ia. Hence, the refined

frame of reference of sensing actions is ρa⟨Ta⟩ = ⟨Ta, Ia,Oa⟩.

In the case of announcement actions, it is necessary to state both the executor

j ∈ D(AG) and the attitudes to resolve inconsistent beliefs. Therefore, the frame of

reference of announcement actions is ρa⟨j⟩ = ⟨({j},Ta,Ma,Sa), (Ia,Da),Oa⟩. During

the computation of the update, the attitude of the announcer j is set to match the

perspective of the agent being currently handled by the transition function. In

particular, as mentioned before, the announcer considers her/him-self stubborn;

given that the announcement does not intact her/his beliefs about the truth value of

the announced property. On the other hand, trustful and stubborn agents consider

the announcer to be truthful; and mistrustful agents consider the announcer to be

lying. Notice that the announcer is aware of the perspectives of others on her/his

attitude, and so are the remaining agents. Assuming private points of view on

the agents’ attitudes brings an extra overhead to the problem and, therefore, we

will address this issue in future works.

Let us note that the actions’ effects are assumed to be deterministic. This

assumption can be relaxed, as shown by Kuter et al. [2008]. Nonetheless, this would

generate a significant performance overhead that would render the planning process

unfeasible, most of the time. Given that the interest of the epistemic planning

community lies in trying to capture the agents’ information relations, we leave the

formalization of non-deterministic actions as future work.

We assume the presence of a unique statement that describes the effects of an

epistemic action. Namely, we allow to sense/announce a single literal at a time.

Therefore, we assume the presence of a unique fluent literal that describes the

effects of epistemic actions to further avoid non-determinism. This limitation is

necessary as the presented transition function of epistemic actions considers the

negation of the effects that, if defined as a conjunction, would generate a disjunctive

form (i.e., non-deterministic effects). As mentioned above, we decided to avoid non-

determinism considering the already poor scalability of MEP problems even without

it. Nonetheless, relaxing this restriction would allow to represent domains in which

4. Trust, Misconception, and Lies in MEP 89

sensing/announcing fluent formulae might be central. Conversely, ontic actions are

not subject to this restriction and, therefore, can affect conjunctions of literals.

Let ℓ be the (unique) fluent literal such that [a senses/announces ℓ] ∈ D.

With a slight abuse of notation, we define the value of ℓ in a possibility w as

val(a,w) = w(ℓ). The effect e(a) of action a is equal to 1 if ℓ is a positive fluent

literal (e(a) = 0, otherwise). We use the following simplifications: given a possibility

p, (i) p′ denotes the updated version of p; and (ii) if not stated otherwise, we

consider p′(F) = p(F). For clarity, we briefly describe each component of the

transition function after its definition.

Definition 4.4: Epistemic Actions with Attitude in mAρ

Let i be an agent (i.e., i ∈ D(AG)). Applying an epistemic action instance a on
the pointed possibility u results in the updated pointed possibility Φ(a, u) = u′

such that:

u′(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(i) if i ∈ Oa

P(a, u) if i ∈ Pa

F(a, u, 1) if i ∈ Ta

F(a, u, 0) if i ∈Ma

S(a, u, e(a), 1) if i ∈ Sa

S(a, u, e(a), 0) if i = j

where P, F, S are defined below.

Description: Φ modifies the beliefs of each agent on the announced fluent
with respect to her/his attitude. For instance, the beliefs of trustful agents are
updated by the sub-function F. Each sub-function (P, F, S) updates the nested
beliefs of the agents, i.e., the beliefs that the agents have of others’ perspectives.

Helper functions χ and χ̄

We first define the helper functions χ and χ̄. Let w′
x = χ(a,w, x) and w̄′

x =
χ̄(a,w, x̄) where: (i) w′

x and w̄′
x represent the possibility w updated with χ and

χ̄, respectively; (ii) x and x̄ represent opposite Boolean values s.t. x = ¬x̄; and
(iii) let b be 1 and 0 when executing χ and χ̄, respectively. Then w′

x and w̄′
x

are defined as follows:

w′
x(ℓ) =

⎧⎨⎩x if ℓ = f
u(ℓ) otherwise

w̄′
x(ℓ) =

⎧⎨⎩x̄ if ℓ = f
u(ℓ) otherwise

90 4.2. Updated Transition Function

w′
x(i)

w̄′
x(i)

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a,w) if i ∈ Pa⋃︁
v∈w(i)

χ(a, v, x) if i ∈ Ta ∨ (i = j ∧=1)⋃︁
v∈w(i)

χ̄(a, v, x̄) if i ∈Ma ∨ (i = j ∧=0)

S(a,w, x, 1) if i ∈ Sa

Description: Functions χ and χ̄ recursively update the nested beliefs of
trustful and mistrustful agents (the cases of other attitudes are delegated to
the respective sub-functions). However, they do not correspond to trustful
and mistrustful attitudes. The functions χ and χ̄ are exploited by P and F/S
by specifying the correct value of x to guarantee the correct update of the
beliefs of partially and fully observant agents, respectively. We make use of
two Boolean variables: (i) x encodes the truth value of ℓ believed by i; (ii) b is
a flag that keeps track of whether i is trustful (b = 1) or mistrustful (b = 0)
with respect to the announcer.

Sub-function P
Let w′

p = P(a,w). Then:

w′
p(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa⋃︁
v∈w(i)

P(a, v) if i ∈ Ia⋃︁
v∈w(i)

χ(a, v, 0) ∪ χ(a, v, 1) if i ∈ Da⋃︁
v∈w(i)

χ(a, v, val(a, v)) if i ∈ Ta ∪Ma ∪ {j}⋃︁
v∈w(i)

S(a, v, val(a, v), 1) if i ∈ Sa

Description: Function P updates the beliefs of partially observant agents. It
updates their “direct beliefs” (i.e., that represent their point of view) on ℓ and
the nested beliefs of fully observant agents (by calling χ with x = val(a,w)).
This guarantees that agents in Pa believe that (mis)trustful agents are aware
of the action’s effect. For doubtful agents χ is executed with both x = 0 and
x = 1, forcing them to be ignorant about ℓ.

4. Trust, Misconception, and Lies in MEP 91

Sub-function F
Let w′

f = F(a,w, b). Then:

w′
f(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a,w) if i ∈ Pa⋃︁
v∈w(i)

χ(a, v, e(a)) if i ∈ Ta ∨ (i = j ∧=1)⋃︁
v∈w(i)

χ̄(a, v,¬e(a)) if i ∈Ma ∨ (i = j ∧=0)⋃︁
v∈w(i)

S(a, v, e(a), 1) if i ∈ Sa

Description: Function F updates the point of views on ℓ of trustful and
mistrustful agents, calling χ and χ̄, respectively. Moreover, F deals with the
beliefs of other agents with respect to to (mis)trustful agents. The flag b keeps
track of whether F is executed from the perspective of a trustful (b = 1) or a
mistrustful (b = 0) agent allowing to update i’s perspective on the beliefs of
the announcer.

Sub-function S
Let w′

s = S(a,w, x, s). Then:

w′
s(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a,w) if i ∈ Pa⋃︁
v∈w(i)

χ(a, v, x) if i ∈ Ta ∨ (i = j ∧ s = 1)⋃︁
v∈w(i)

χ̄(a, v,¬x) if i ∈Ma⋃︁
v∈w(i)

S(a, v, x, s) if i ∈ Sa ∨ (i = j ∧ s = 0)

Description: Function S keeps the “direct” beliefs of the executor and
stubborn agents unchanged and it updates their perspective on other agents’
beliefs. Here, we make use of two Boolean variables: (i) x is defined as in χ/χ̄;
(ii) s is used to identify whether the function has been called by a stubborn
agent (s = 1) or if it is updating the “direct” beliefs of the executor (s = 0).

While Definition 4.4 formally defines how an e-state is updated after the execution

of an epistemic action when agents’ attitudes are considered, let us present its

intuitive meaning. Let a be an announcement action (a sensing action can be thought

of as a special case of an announcement). The point of view of oblivious agents

remains untouched. Since a is an epistemic action, the fluents of the pointed world

u′ are unchanged with respect to its previous version u. On the other hand, trustful

agents’ points of view are changed to fit the announced property ℓ; mistrustful

92 4.2. Updated Transition Function

agents believe the opposite of what is announced; stubborn and impassive agents do

not change their belief on ℓ. The perspective of doubtful agents is built by including

also the opposite point of view with respect to ℓ. Higher-order beliefs are also

correctly updated as stated in Proposition 4.1. Fully observant agents are aware

of how each agent updates her/his beliefs. That is, they update the information

states of other agents according to the attitudes of the other: (i) impassive agents

do not change their belief on ℓ; (ii) doubtful agents no longer hold any belief on ℓ;

and (iii) fully observant agents change their belief on ℓ as described above.

The information states of partially observant agents are updated similarly. The

main difference lies in the fact that they are not aware of how fully observant

agents update their points of view. Hence, partially observant agents maintain their

perspective on the beliefs of fully observant agents unchanged.

Finally, the announcer considers her/him-self stubborn, since the announcement

does not intact her/his beliefs, while other agents derive the attitude of the announcer

depending on their own. As mentioned before, trustful and stubborn agents consider

the announcer to be truthful, while mistrustful agents consider the announcer to

be lying. Notice that the announcer is aware of the other agents’ perspective

on her/his attitude.

4.2.1 Examples of Actions Execution

In this section, we will show some examples of execution to better illustrate how

the newly introduced transition function works. When needed we will describe

the agents’ attitudes. We will present, through labeled graphs, the e-state before

and after the update for each example. While to capture all the combinations of

attitudes we would need a far larger number of examples, we decided to provide

only those that show the fundamental attitudes behavior and interactions. All

the examples will be based on a simple variation of the Coin in the Box domain.

Before presenting the examples of execution let us introduce the Rigged Coin in

the Box in Planning Domain 4.1.

4. Trust, Misconception, and Lies in MEP 93

Planning Domain 4.1: Rigged Coin in the Box

Five agents, l,m, r, s, c, are inside a room containing a box. Agents l,m stand
to the left of the box; r, s are at the box’s right, and c is positioned in front
of the box. Inside the box, agent c placed a rigged coin. Any agent might
peek (sensing action) inside the box to learn the coin position. Since the coin
is rigged, the actual position (either tails or heads up) is only visible when
an agent is standing in front of the box (i.e., c) or at its right (i.e., r and
s). On the other hand, any agent that stands at the box’s left (i.e., l and m)
will always see the coin facing tails up. All the agents can share information
through the action announce(position) (announcement action) that allows
them to announce the position of the coin.

For the sake of readability, in all the following examples, we will use the same

initial e-state while varying the agents’ attitudes and the executed action. Let

us now explain the initial configuration in Example 4.1 and then illustrate the

corresponding e-state, in Figure 4.1, that from now on will be identified with u. A

reminder on how to “read” an e-state graphical representation is presented right

after the following initial e-state description.

Example 4.1: The Initial Configuration In our initial configuration we
assume that is common belief that agents l, m, r, and s do not know the coin
position, i.e., CD(AG)(¬Bi(heads) ∧ ¬Bi(¬heads)) with i ∈ {l,m, r, s}. On the
other hand, agent c is aware of the coin position and the other agents know
this, that is, in our initial e-state it holds CD(AG)(Bc(heads) ∨Bc(¬heads)).
Assuming that the coin position is heads up the graphical representation of
this e-state is as follows.

¬heads heads
{c, l, m, r, s}{c, l, m, r, s} {l, m, r, s}

Figure 4.1: The initial e-state u of Planning Domain 4.1.

Before exploring the examples, let us briefly recall how to interpret the graphical

representation of e-states. Consider Figure 4.1. The bold-lined world represents

the actual world. If a world u is connected by an edge labeled with agent i to a

world v, this means that in the world u agent i believes v to be possible.

94 4.2. Updated Transition Function

In the initial state, each agent, except c, admits both the worlds where heads

holds and where ¬heads holds. This means that such agents are uncertain about

the coin position. On the other hand, agent c does know the actual configuration

of the coin. We can understand this because in the actual world c admits only

the world where heads hold.

Finally, observe that the remaining agents do not know what c knows. In fact,

the formula Bm(Bc(heads)) ∨Bc(¬heads) is true. On the other hand, the formula

Bm(Bc(heads)) does not hold in the initial state.

Example 4.2: Correct Sensing This example shows how u is updated
after the execution of the action instance peek⟨{r, s}⟩. As said in Planning
Domain 4.1 both the agents r and s are able to correctly determine whether
the coin lies tails or heads up. Since we are executing a sensing action we are
only interested in defining the oblivious, the fully, and the partially observant
agents. In particular, for this action instance, we assume r and s to be fully
observant, l and m to be partially observant and c to be oblivious. As we can
see in the resulting e-state (Figure 4.2) r and s believe that the coin lies heads
up. Moreover, l and m still do not know the coin position but believe that r
and s know it. Finally, being c oblivious, she did not change her beliefs about
anything.

¬heads

{l, m}

heads
{c, l, m, r, s}{c, l, m, r, s}

{c} {c}

¬heads

{l, m, r, s} {l, m, r, s}

heads

{l, m, r, s}

Figure 4.2: The e-state u′ obtained after the execution of correct sensing on u.

4. Trust, Misconception, and Lies in MEP 95

Example 4.3: Wrong Sensing This example shows how u is updated
after the execution of the action instance peek⟨{l,m}⟩. As said in Planning
Domain 4.1 both the agents l and m always see the coin lying tails up. Since we
are executing a sensing action we are only interested in defining the oblivious,
the fully, and the partially observant agents. In particular, for this action
instance, we assume l and m to be fully observant, r and s to be partially
observant and c to be oblivious. As we can see in the resulting e-state
(Figure 4.3) l and m believe that the coin lies tails up. Moreover, r and s
still do not know the coin position but believe that l and m know it. Finally,
being c oblivious, she did not change her beliefs about anything.

¬heads

{r, s}

heads
{c, l, m, r, s}{c, l, m, r, s}

{c} {c}

¬heads

{l, m, r, s} {l, m, r, s}

heads

{l, m, r, s}

heads

{c}

{r, s}{l, m, r, s}

Figure 4.3: The e-state u′ obtained after the execution of wrong sensing on u.

96 4.2. Updated Transition Function

Example 4.4: Trust & Mistrust This example shows how u is updated
after the execution of the action instance announce⟨c⟩ where c announces
heads. In particular, for this action instance, we assume:

• c to be the executor ;

• l to be trustful;

• m to be mistrustful;

• r to be impassive; and

• s to be doubtful;

As we can see in the resulting e-state (Figure 4.4) l and m believe that the coin
lies heads and tails up, respectively. Moreover, l and m believe that c shares
their beliefs on the coin position. Finally, agents r and s, still do not know the
coin position but believe that c, l, and m know it.

{r, s}
¬heads

{c, l, m, r, s}

heads

{r, s} {r, s}
{r, s}{r, s}

¬heads
{c, l}

heads
{m}
{l}

{c, m}

{c, l, m, r, s}

Figure 4.4: The e-state u′ obtained after the announcement of heads in u with
trustful & mistrustful listeners.

4. Trust, Misconception, and Lies in MEP 97

Example 4.5: (Mis)Trust & Stubbornness This example shows how
u is updated after the execution of the action instance announce⟨c⟩ where c
announces heads. Differently from the previous example, the agents’ attitudes
are as follows:

• c to be the executor ;

• l to be trustful;

• m to be mistrustful;

• r to be doubtful; and

• s to be stubborn;

As we can see in the resulting e-state (Figure 4.5) agents c and l believe that
the coin lies heads up while m thinks that it lies tails up. Even if s did not
change her beliefs on the coin position she knows what c, l believe that the
coin is heads up while m think that it is tails up. Agent r, instead still does
not know the coin position but believes that c, l, and m know it. We will use a
dotted square to indicate that the edges that reach such a square, transitively
reach all the worlds contained.

¬heads

{s}

heads
{c, l, m, r, s}{c, l, m, r, s}

{r} {r}

¬heads

{s} {s}

heads

{r, s}

{s}

{s}

¬heads
{c, l}

heads
{m}
{l}

{r} {r}

{c, m}

{m}
{s}
{c, l}

{s}{c, l} {m}

Figure 4.5: The e-state u′ obtained after the announcement of heads in u with
(mis)trustful & stubborn listeners.

98 4.2. Updated Transition Function

Example 4.6: Lie This example shows how u is updated after the execution
of the action instance announce⟨c⟩ where c announces ¬heads. Let us note
that this announcement, since it is performed by c that believes heads, is a lie.
For this action instance, we assume:

• c to be the executor ;

• l to be trustful;

• m to be mistrustful;

• r to be doubtful; and

• s to be oblivious;

As we can see in the resulting e-state (Figure 4.6) agent l believed to the lie and
now has a wrong belief about the coin position. On the other hand and m did
not believe the announcer and, therefore, now correctly think that the coin lies
heads up. Being the executor, c knew that she was lying and, therefore, still
believes that the coin is heads up. Moreover, l and m believe that c shares their
beliefs on the coin position. Agents r, still does not know the coin position but
believe that c, l, and m know it. Finally, being s oblivious, she did not change
her beliefs about anything.

¬heads

{r}

heads
{c, l, m, r, s}{c, l, m, r, s}

{s} {s}

¬heads

{c, l, m, r} {c, l, m, r}

heads

{l, m, r, s}

{r} {r}
{r}{r}

¬heads
{c, m}

heads
{l}
{m}

{s} {s}

{c, l}

Figure 4.6: The e-state u′ obtained after the execution of a lie (i.e., c announce
¬heads) in u with trustful & mistrustful listeners.

4. Trust, Misconception, and Lies in MEP 99

4.2.2 Desired Properties

Following the usual schema, we list some properties concerning the new actions

that consider attitudes. Complete proofs are available in Appendix A.4.

Proposition 4.1: Epistemic Actions Properties

Let a⟨j⟩ be an epistemic action instance such that j announces ℓ (where ℓ
is either f or ¬f). Let u be an e-state and let u′ be its updated version, i.e.,
Φ(a, u) = u′, then it holds that:

(1) u′ |= CFa(CTa(ℓ ∧Bj(ℓ)));

(2) u′ |= CFa(CMa(¬ℓ ∧Bj(¬ℓ)));

(3) ∀i ∈ (Sa ∪ {j}), u′ |= φ if u |= φ with φ ∈ {Bi(ℓ); Bi(¬ℓ); (¬Bi(ℓ) ∧
¬Bi(¬ℓ))};

(4) ∀i ∈ Fa, u′ |= CPa(Bi(ℓ) ∨Bi(¬ℓ));

(5) ∀i ∈ Da, u′ |= CFa∪Pa(¬Bi(ℓ) ∧ ¬Bi(¬ℓ));

(6) for every pair of agents i ∈ D(AG) and o ∈ Oa, and a belief formula φ,
u′ |= Bi(Bo(φ)) if u |= Bi(Bo(φ)).

The features presented in Proposition 4.1 capture fundamental aspects of the

updated e-state after the execution of an announcement. Intuitively, they model

the following properties:

(1) Fully observant agents think that trustful agents believe that the announced

property holds and that the announcer believes such property;

(2) Fully observant agents think that mistrustful agents believe that the announced

property does not hold and that the announcer does not believe such property;

(3) Stubborn agents and the announcer do not modify their beliefs about the

announced property.

(4) Partially observant agents believe that fully observant agents (including the

announcer) are certain of the value of the announced property;

100 4.3. Related Work

(5) Non-oblivious agents believe that doubtful agents are uncertain on the truth

value of the announced property;

(6) Every agent (even oblivious agents) knows that oblivious agents do not change

their beliefs.

4.3 Related Work

The enriched semantics of mAρ has been implemented in the C++ solver EFP

(presented in chapter 5) that is now able to tackle families of problems that consider

complex aspects such as doxastic reasoning, lying agents, faulty perception, etc.

To the best of our knowledge, in the literature, only one other solver, RP-

MEP [Muise et al., 2015], can tackle such domains. This solver firstly encodes

a MEP problem into a classical planning problem and then handles the solving

phase with a “classical” planner. The key difference between EFP and RP-MEP

is that while RP-MEP grounds the agents’ beliefs and reasons on them as if they

were “static facts”, EFP builds and interprets e-states, and it updates them using

a full-fledged epistemic transition function. For this reason, the latter constitutes

a more comprehensive framework. In fact, given the effects of an action instance

(a single literal/conjunction of literals), the transition function of mAρ propagates

the effects and updates the nested beliefs of agents automatically. Conversely,

RP-MEP needs the propagated effects to be explicit. Nonetheless, the “implicit

beliefs update” of EFP makes this approach less performing with respect to RP-

MEP. The latter, in fact, with a little extra effort on the input description, is

able to solve the same domains as EFP, outperforming it whenever the depth of

the formulae is set to a reasonable number.

Other theoretical approaches explore the idea of trust between agents [Castel-

franchi and Falcone, 1998, Herzig et al., 2010, Rodenhäuser, 2014]. For example,

following Castelfranchi and Falcone [1998], Herzig et al. devised a logic to capture

the “truster’s belief about certain relevant properties of the trustee with respect to

a given goal”. While the ideas of Castelfranchi and Falcone are elegantly captures

4. Trust, Misconception, and Lies in MEP 101

by this logic, Herzig et al. do not actively use the notion of trust to modify the

outcome of an action’s execution with respect to an agent’s perspective, that is what

we are trying to accomplish with our idea of attitudes. Conversely, Rodenhäuser

[2014] proposes a theoretical framework where agents make use of the reliability of

the source (using the so-called dynamic attitudes) to correctly update their beliefs.

While our idea of attitudes stems from such work, we only introduced attitudes that

are intuitively derived from real-world scenarios without considering more complex

ones. In the future, we plan to expand our formalization and the planner with the

attitudes presented by Rodenhäuser [2014] along with the idea of “plausibility”.

Belief revision [Baltag and Smets, 2016] in presence of inconsistent/false beliefs

has been explored by Baral et al. and Herzig et al.. These works focus on the

introduction of a theoretical framework for resolving inconsistencies. Hence, we only

compare their approaches with our formalization. Baral et al. [2015] mainly focus on

false beliefs, dividing their approach into two steps. First, they remove the incorrect

beliefs of fully observant agents from the current e-state; and next, they apply the

action on the revised state. Their solution correctly accounts for false beliefs, but

it is not sufficient to resolve inconsistent beliefs. On the other hand, Herzig et al.

[2005] propose a multi-agent extension of AGM-style belief revision [Gärdenfors

and Makinson, 1988]. Once a new property is acquired with a sensing action, the

agents update their beliefs according to their view of the observation. The revision

procedure makes use of a preference-based revision operator. While revising the

agents’ beliefs could be a viable solution we believe that having to decouple the

belief revision from the e-state update for each action execution would generate

an excessive overhead in the solving process.

102

Life is what happens to us while we are making
other plans.

— Allen Saunders
Reader’s Digest, January 1957

5
Comprehensive Multi-Agent Epistemic

Planners

Contents
5.1 Background . 103

5.1.1 Imperative and Declarative Programming 104
5.2 EFP: an Epistemic Forward Planner 106

5.2.1 The Overall Architecture 107
5.2.2 EFP 2.0 . 108
5.2.3 Experimental Evaluation 110
5.2.4 Optimizations and Alternative Search Strategies 120

5.3 PLATO: an Epistemic Planner in ASP 137
5.3.1 Modeling MEP using ASP 137
5.3.2 Experimental Evaluation 145
5.3.3 Correctness of PLATO 147

5.1 Background

As already mentioned in Section 1.2, one of the planning community researchers’

most important objectives is to develop automated tools to solve various planning

problems. These tools, known as planners or solvers (Definition 1.7), concretize all

the theoretical studies to solve problems using all the studied techniques. In what

follows we will introduce two solvers, for Multi-agent Epistemic planning problems,

103

104 5.1. Background

that incorporate all the theoretical innovations described in the previous chapters.

These planners share the same objective, i.e., solving problems in the multi-agent

epistemic setting, but are implemented using different programming paradigms. We

will firstly explore these two paradigms and their differences. We will then illustrate

the two planners, describing their design along with some experimental evaluations.

5.1.1 Imperative and Declarative Programming

In this brief introduction, we will present two well-known programming paradigms,

i.e., imperative and declarative. These two approaches are widely studied in the

computer science community and, for the sake of readability, we will assume that

the reader is familiar with such concepts. That is why what follows is just a

high-level characterization of the topics. For a more complete discussion on these

two paradigms, we address the reader to the work by Fahland et al. [2009].

Imperative Programming

Let us start by describing the more “classical” of the two paradigms: imperative

programming. This approach is, in fact, the one that arose alongside the computers.

The programs modeled following this paradigm are made of a series of precise

instructions. These instructions, or commands, are executed sequentially and are

deterministic and, generally, read or write values stored in the computer memory. An

easy, and yet clear, transposition of an imperative program in our everyday life is a

recipe. A recipe, in fact, is comprised of a series of instructions that the reader must

follow if she/he wants to obtain the desired result. This means that an imperative

program is similar to our way of giving or executing instructions, therefore it is only

natural that this approach is the mostly adopted one. Nevertheless, while recipes’

instructions do not need to be too specific, computer commands must be very

detailed given, that the machines lack any sense of “interpretation”. This means

that complex imperative programs might be comprised of a very large sequence of

commands, making it hard to: debug, maintain, explain, adapt, and so on. Examples,

5. Comprehensive Multi-Agent Epistemic Planners 105

among many others, of imperative programming languages are C++ [Stroustrup,

2013], Python [Van Rossum and Drake, 2009], and Java [Arnold et al., 2005].

Declarative Programming

A different type of approach with respect to the one aforementioned is known as

declarative programming. Among the declarative programming paradigms, one

of the most mature and important in AI is logic programming. This paradigm

stems from first-order logic and it has gained a lot of attention in recent years.

The declarative approach aims to solve a problem by describing it and its rules,

rather than explicitly stating the instructions to follow. This makes declarative

programming more suited for all those situations where the problem definition, its

constraints, and the structure of its solution are known, and defining a procedural

algorithm may require great efforts. Examples of such problems are the n-queens

problem [Bowtell and Keevash, 2021] or the well-known Sudoku [Hanson, 2021]. In

particular, in this thesis, we will make use of the language known as Answer Set

Programming [Lifschitz, 2008], or ASP for short, introduced next.

Answer Set Programming A general program P in the language ASP is

a set of rules r of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each element ai, with 0 ≤ i ≤ n, is an atom of the

form p(t1, . . . , tk), p is a predicate symbol of arity k and t1, . . . , tk are terms built

using variables, constants and function symbols. Negation-as-failure (naf) literals

are of the form not a, where a is an atom. Let r be a rule, we denote with

h(r) = a0 its head, and B+(r) = {a1, . . . , am} and B−(r) = {am+1, . . . , an} the

positive and negative parts of its body, respectively; we denote the body with

B(r) = {a1, . . . , not an}. A rule is called a fact whenever B(r) = ∅; a rule is a

constraint when its head is empty (h(r) = false); if m = n the rule is a definite

rule. A definite program consists of only definite rules.

106 5.2. EFP: an Epistemic Forward Planner

A term, atom, rule, or program is said to be ground if it does not contain

variables. Given a program P , its ground instance is the set of all ground rules

obtained by substituting all variables in each rule with ground terms. In what

follows we assume atoms, rules, and programs to be ground. Let M be a set of

ground atoms (false /∈ M) and let r be a rule: we say that M |= r if B+(r) ̸⊆ M

or B−(r) ∩M ≠ ∅ or h(r) ∈M . M is a model of P if M |= r for each r ∈ P . The

reduct of a program P with respect to M , denoted by PM , is the definite program

obtained from P as follows: (i) for each a ∈ M , delete all the rules r such that

a ∈ B−(r), and (ii) remove all naf-literals in the remaining rules. A set of atoms M

is an answer set [Gelfond and Lifschitz, 1988] of a program P if M is the minimal

model of PM . A program P is consistent if it admits an answer set.

We will make use of the multi-shot declarations for ASP, i.e., statements of the

form #program sp(p1, . . . , pk), where sp is the name of the sub-program and the

pi’s are its parameters [Gebser et al., 2019]. Precisely, if R is a list of non-ground

rules and declarations, with R(sp) we denote the sub-program consisting of all

the rules following the statement up to the next program declaration (or the end

of the list). If the list does not start with a declaration, the default declaration

#base is implicitly added by clingo.

An ASP program R is defined extensible if it contains declarations of the form

#external a : B, where a is an atom and B is a rule body. These declarations

identify a set of atoms that are outside the scope of traditional ASP solving

(e.g., they may not appear in the head of any rule). When we set a to true we

can activate all the rules r such that a ∈ B+(r). Splitting the program allows

us to control the grounding and solving phases of each sub-program by explicit

instructions using a Python script.

5.2 EFP: an Epistemic Forward Planner

The first system that this thesis will present is a solver, called EFP, designed

following the imperative programming paradigm. In particular, the solver, that can

be found at https://github.com/FrancescoFabiano/EFP, is fully developed in

https://github.com/FrancescoFabiano/EFP

5. Comprehensive Multi-Agent Epistemic Planners 107

C++ [Stroustrup, 2013]. EFP is a general and comprehensive epistemic forward solver

that can solve problems defined in mAρ. Moreover, thanks to the introduction of

agents’ attitudes and other capabilities (explored later in this chapter), the planner

will allow the users to tailor actions in whichever fashion they prefer without having

to worry about tedious and intricate effects definitions. This will help in formalizing

new scenarios in which agents can reason while considering belief relations with

concepts such as lies, misconceptions, trust, and so on and where different groups

of agents react differently to the actions.

5.2.1 The Overall Architecture

The overall architecture of EFP is given in Algorithm 1 even if it is not different

from the standard algorithm implemented by search-based planners. Nonetheless,

EFP has a modular organization that facilitates modifications and extensions. The

key modules of EFP are (i) a pre-processor; (ii) initial e-state computation; and

(iii) a search engine.

(i) Pre-processor : This module is responsible for parsing the planning problem

description, setting up the planning domain, which includes the list of agents,

the list of actions, the rules for computing frames of reference, and the list

of fluent literals. This module is also responsible for the initialization of

necessary data structures (e.g., e-states) and executes some transformations.

(ii) Initial e-state computation: This module is responsible for computing the set

of initial e-states. Under the assumption that the initial state description

encodes a finitary S5-theory in the sense of Son et al. [2014], we know that the

set of initial e-states is finite (up to bisimulation). This module implements

the algorithm given in Son et al. [2014] for computing the aforementioned set

of initial e-states.

(iii) Search engine: This module is responsible for computing a solution. EFP

implements different research strategies such as breadth-first, depth-first, and

best-first search (Algorithm 1), that can be selected by the user to solve

108 5.2. EFP: an Epistemic Forward Planner

the desired problem. The heuristics used by EFP, when best-first search is

selected, are presented in the next section. Finally, this search engine is able

“to reason” on both the two e-states representations discussed in the previous

chapters, i.e., Kripke structures and possibilities.

Algorithm 1: EFP Best-First Search
Input : A planning problem P = ⟨F ,AG, A,O, s0, ϕg⟩
Output : A solution for P if exists; failed otherwise

1 Compute the initial e-state given s0: (Mi,Wi)
2 Initialize a priority queue q = [({(Mi,Wi)}, [])]
3 while q is not empty do
4 (Ω, plan) = dequeue(q)
5 if (M,Wd) |= ϕg for every (M,Wd) ∈ Ω then
6 return plan
7 end
8 for action a executable in every (M,Wd) in Ω do
9 Compute Ω′ = ⋃︁

(M,Wd)∈Ω Φ(a, (M,Wd))
10 Compute heuristics and insert (Ω′, plan ◦ a) into q
11 end
12 end
13 return failed

5.2.2 EFP 2.0

The solver EFP was firstly introduced by Le et al. [2018] as the first epistemic

planner able to deal with unlimited nested belief formulae and dynamic common

knowledge. This original planner, which we will identify with EFP 1.0, was based

on the action language mA∗ and, therefore, used Kripke structures as e-states

representation. The planner allowed for both breadth-first and best-first searches.

The heuristic used in the latter was the so-called Epistemic Planning Graph that

allowed reasoning on partial Kripke structures to derive the score of the various

e-states. For more details on EFP 1.0 and on the Epistemic Planning Graph we

address the reader to the work by Le et al. [2018].

In this work, we present an updated version of the planner presented by Le

et al.. For clarity, we will call such updated planner EFP 2.0. This new solver

5. Comprehensive Multi-Agent Epistemic Planners 109

redesigned every element of EFP 1.0 to introduce multiple e-states representations

and, therefore, multiple transition functions. On the other hand, our implementation

keeps the same modular structure of EFP 1.0. The planning process executed by

EFP 2.0 is, primarily, a breadth-first search with duplicate checking. Other types of

searches have been also implemented and will be presented later in this chapter.

Let us note that the computation of the initial state is not a trivial task in MEP. In

particular, given a belief formula φini it is, in general, possible to generate infinite

e-states that respect φini. As mentioned, to overcome this problem EFP 1.0 imposes

that the initial state description should be a finitary S5-theory [Son et al., 2014].

In EFP 2.0 we still require the initial description to be a finitary S5-theory but we

allow φini to be less specific. In particular, without going into details of finitary

S5-theories, whenever a fluent literal f is not considered by φini, EFP 2.0 assumes

that is common knowledge between all the agents that f is unknown.

Another remark that has to be done is about the e-states. EFP 2.0 has

a “templatic” e-state definition. This means that each solving process can be

executed using the desired e-state representation with its relative transition function.

Currently, EFP 2.0 implements two e-states representations, i.e., Kripke structures

and possibilities, and diverse transition functions that can be selected to solve

the given problem:

• the one introduced in Baral et al. [2015] (for Kripke structures);

• the transition function for possibilities introduced in Definition 2.12 that

emulates the behavior of mA∗;

• the enriched possibilities update that allows for agents to be characterized

with attitudes presented in Definition 4.4; and

• an experimental transition function for possibilities that allows for user-defined

update models to be adopted. We will analyze this configuration later in this

section.

110 5.2. EFP: an Epistemic Forward Planner

Another important concept that EFP 2.0 integrates is the Kripke structures size

reduction. We implemented two algorithms, following the works by Paige and Tarjan

[1987], Dovier et al. [2004], that starting from a generic Kripke structure compute its

bisimilar, and therefore semantically equivalent, correspondent with minimal size.

Finally, EFP 2.0 introduces the concept of “already visited e-state”. Excluding

the already visited states during the planning is a common practice and it is done in

the majority of the solving processes. Nevertheless, EFP 1.0 did not implement the

comparison of visited states. That is because comparing two e-states is not as trivial

as comparing, for instance, two sets of fluent literals. In fact, being each e-state in

mA∗ a Kripke structure, comparing two e-states means checking for isomorphism

or bisimulation between them. That is why in EFP 1.0 the comparison for already

visited states was left as future development. On the other hand, with possibilities,

the equality check should be faster since, thanks to the non-well-foundeness, we

can collapse each possibility in a small system of equations and exploit the already

calculated possibilities information. That is why in EFP 2.0 we implemented the

visited e-state check initially for possibilities and later for Kripke structures.

5.2.3 Experimental Evaluation

In this paragraph we compare the new multi-agent epistemic planner EFP 2.0 with,

to the best of our knowledge, the only other comprehensive multi-agent epistemic

solver in literature, i.e., the planner presented in Le et al. [2018]. All the experiments

were performed on a 3.60GHz Intel Core i7-4790 machine with 32GB of memory.

From now on, to avoid unnecessary clutter, we will make use of the fol-

lowing notations:

• L to indicate the (optimal) length of the plan;

• WP to indicate that the solving process returned a Wrong Plan;

• TO to indicate that the solving process did not return any solution before the

timeout (25 minutes);

5. Comprehensive Multi-Agent Epistemic Planners 111

• EFP 1.0 to denote the Breadth-First search planner presented in Le et al.

[2018]. We chose the Breadth-First solver because we wanted to focus on the

basis of the solving process so that all the future optimizations could benefit

from this research.

• K-MAL to identify our solver while using Kripke structures as e-state repre-

sentation and the transition function of Baral et al. [2015].

• K-BIS to identify our solver while using Kripke structures as e-state represen-

tation and the algorithm to find the coarsest refinement, presented in Paige

and Tarjan [1987], to minimize the e-states size. We also tried to compact

the e-states using the algorithm presented in Dovier et al. [2004] but the

performances were almost identical. This is probably because the Kripke

structures we are considering are relatively small in size.

• P-MAR to identify our solver while using possibilities as e-state with the

transition function introduced in Definition 2.12.

All the configurations K-MAL, K-BIS, and P-MAR check for already visited states.

To indicate the same configurations without the visited states check we will use

K-MAL-NV, K-BIS-NV, and P-MAR-NV.

We evaluate EFP 2.0 on benchmarks collected from the literature [Kominis and

Geffner, 2015, Huang et al., 2017]. In particular, these domains are:

(i) Collaboration and Communication (CC). In this domain, n ≥ 2 agents move

along a corridor with k ≥ 2 rooms in which m ≥ 1 boxes can be located.

Whenever an agent enters a room, she can determine if a certain box is in

the room. Moreover, agents can communicate information about the boxes’

position to other attentive agents. The goals consider agents’ positions and

their beliefs about the boxes (Table 5.1).

(ii) Selective Communication (SC). SC has n ≥ 2 agents that start in one of

the k ≥ 2 rooms in a corridor. An agent can tell some information and

all the agents in her room or the neighboring ones can hear what was told.

112 5.2. EFP: an Epistemic Forward Planner

L EFP 1.0 K-MAL K-BIS P-MAR EFP 1.0 K-MAL K-BIS P-MAR
CC_1: |AG| = 2, |F| = 10, |A| = 16 CC_3: |AG| = 3, |F| = 14, |A| = 24

3 .08 .05 .08 .02 .12 .07 .13 .03
4 .16 .09 .16 .03 .56 .31 .54 .10
5 1.31 .79 1.14 .16 6.55 3.25 4.89 .60
6 6.99 3.58 4.42 0.64 25.11 9.09 12.66 1.71
7 49.44 15.95 16.06 2.61 TO 92.37 142.06 12.37

CC_2: |AG| = 2, |F| = 14, |A| = 28 CC_4: |AG| = 3, |F| = 14, |A| = 42
3 .31 .21 .37 .07 .62 .54 .81 .15
4 1.54 .98 1.77 .26 3.22 2.84 5.40 .87
5 22.14 12.55 18.80 1.68 104.97 106.02 152.38 7.41
6 171.19 72.92 102.97 7.71 473.03 246.08 313.70 25.47
7 TO 437.91 592.48 38.81 TO TO TO 174.67

Table 5.1: Runtimes for the Collaboration and Communication (CC) domain.

Every agent is free to move from one room to its adjacent. The goals usually

require some agents to know certain properties while other agents ignore them

(Figure 5.1).

5 6 7 8 9 10 11

0

20

40

60

80

100

Plan length

S
ea
rc
h
ti
m
e
(i
n
se
co
n
d
s)

EFP 1.0
P-MAR

Figure 5.1: Comparison between EFP 1.0 and P-MAR on SC instances with k = 11
rooms and |AG| = 9.

(iii) Grapevine (GR). n ≥ 2 agents are located in k ≥ 2 rooms. An agent can

move freely to each other room and she can share a “secret” with the agents

that are in the room with her. This domain supports different goals, from

5. Comprehensive Multi-Agent Epistemic Planners 113

sharing secrets with other agents to having misconceptions about agents’

beliefs (Table 5.2).

Grapevine
|AG| |F| |A| L EFP 1.0 K-MAL-NV K-MAL K-BIS-NV K-BIS P-MAR-NV P-MAR

3 9 24

2 WP .09 .09 .19 .20 .03 .02
4 WP 9.19 8.13 13.54 12.76 1.34 1.25
5 WP 94.49 75.32 111.38 84.46 8.67 7.71
6 WP 372.64 278.93 398.10 232.54 27.63 20.26

4 12 40

2 WP 1.85 1.786 1.95 2.08 .17 .18
4 WP 403.11 274.53 178.52 111.38 13.49 7.31
5 WP TO TO TO 775.63 123.54 36.54
6 WP TO TO TO TO 427.97 108.64

Table 5.2: Runtimes for the Grapevine (GR) domain. We compare the configurations
with and without the visited e-states check. EFP 1.0 errors are caused by a wrong initial
e-state generation.

(iv) Coin in the Box (CB). This domain is firstly presented in Planning Domain 2.1

we will still provide a brief description of it. n ≥ 3 agents are in a room

where in the middle there is a box containing a coin. None of the agents know

whether the coin lies heads or tails up and the box is locked. One agent has

the key to open the box. The goals usually consist in some agents knowing

whether the coin lies heads or tails up while other agents know that she knows,

or are ignorant about this (Table 5.3).

CB with |AG| = 3, |F| = 8, |A| = 21
L EFP 1.0 K-MAL K-BIS P-MAR
2 .003 .003 .006 .001
3 .048 .077 .097 .016
5 WP 5.546 1.438 .367
6 WP 108.080 14.625 2.932
7 WP 317.077 38.265 6.996

Table 5.3: Runtimes for the Coin in the Box (CB) domain.

(v) Assembly Line (AL). In this problem, there are two agents, each responsible

for processing a different part of a product. Each agent can fail in processing

her part and can inform the other agent of the status of her task. Two agents

decide to assemble the product or restart, depending on their knowledge about

114 5.2. EFP: an Epistemic Forward Planner

the product status. The goal in this domain is fixed, i.e., the agents must

assemble the product, but what varies is the depth of the belief formulae used

as executability conditions (Table 5.4).

AL with |AG| = 2, |F| = 4, |A| = 6
d EFP 1.0 K-MAL K-BIS P-MAR
2 .43 .32 .42 .07
4 .96 .75 .64 .11
6 26.20 27.85 13.51 2.44
8 TO TO 883.87 150.92
C .44 .32 .43 .08

Table 5.4: Runtimes for the Assembly Line (AL) domain. The last row identifies the
instance where the executability conditions are expressed through common belief.

All our experiments (Tables 5.1 to 5.4, Figure 5.1) show that EFP 2.0, if used with

its fastest configuration P-MAR, performs significantly better than EFP 1.0. We

believe that these results derive from several factors.

First and foremost the choice of using possibilities as e-states and mAρ as action

language ensured that every e-state generated during the planning process had

always smaller or equal size with respect to the same state generated in EFP 1.0.

In particular, EFP 1.0, generating e-states with non-minimal size, introduces extra

(always increasing) overhead at each action application with respect to EFP 2.0.

This is illustrated in Table 5.5 where the number of worlds and edges generated by

EFP 1.0 & K-MAL and K-BIS & P-MARafter executing an action instances sequence

is compared. Let us note that Table 5.5 is graphically rendered in Figure 2.12.

Moreover, the implementation of P-MAR exploits already calculated e-states

information when it creates new ones reducing even more the e-states generation

time (this factor is not considered in Table 5.5). From our results, it is clear that

EFP 1.0 and P-MAR perform similarly on very small instances of the problems but

as soon as the problem grows the two solvers have different behaviors. In fact, while

EFP 1.0 search time increases very rapidly P-MAR stays relatively stable. That

is because when the problems become more complex the planner, generally, has

to generate more e-states. Regarding the other configurations of EFP 2.0, namely

5. Comprehensive Multi-Agent Epistemic Planners 115

CB with |AG| = 3, |F| = 8, |A| = 21

L
|Worlds| |Edges|

EFP 1.0 & K-BIS & EFP 1.0 & K-BIS &
K-MAL P-MAR K-MAL P-MAR

1 6 6 36 36
2 12 9 70 53
3 24 14 138 82
4 48 19 274 111
5 85 23 465 131
6 159 31 847 171
7 273 38 1409 201
8 468 45 2435 231
9 819 52 4361 261
10 1461 59 8037 291

Table 5.5: Comparison of the e-states’ size, in terms of worlds (left) and edges (right),
generated by the various solving processes on the Coin in the Box (CB) domain.

K-MAL and K-BIS, we note that they generally outperform EFP 1.0. Nevertheless,

in some cases (Tables 5.1 and 5.4), we note some exceptional peaks in these

configuration’s performances. These peaks are the results of (i) the use of the

visited-state check that in some configurations may add an extra overhead that

in EFP 1.0 was not present; and (ii) a less optimized entailment-check function,

with respect to EFP 1.0, in the configurations of EFP 2.0 that are based on Kripke

structures. A remark has to be done on the K-BIS configuration. From the results

(Tables 5.1 to 5.4), it is clear how this configuration, even if executes the solving

process on minimal-sized e-states, it is still outperformed by P-MAR. The reasons

for this are essentially two: (i) thanks to their non-well-founded nature possibilities

allow re-using already generated information during the planning process; and

(ii) the use of external algorithms to minimize the size of the e-states introduces

an extra overhead with respect to P-MAR.

Another important factor that makes EFP 2.0 faster than EFP 1.0 is the concept

of visited e-states. As we can see in Table 5.2 the planner takes advantage of this

check even when the e-states are represented as Kripke structures. The fact that

the visited-state check increases the performances of EFP 2.0 proves that, even if

116 5.2. EFP: an Epistemic Forward Planner

this check relies on “heavy” algorithms, the epistemic planning process benefits

from the elimination of the duplicates.

Finally, the complete refactoring of the code helped us to implement a more

efficient solver. In fact, even if EFP 2.0 is based on EFP 1.0, the remodeling of

the solver allowed us: (i) to correct bugs related to the initial e-state generation

(Table 5.2) and to the transition function (Table 5.3); and (ii) to optimize the code.

This optimization is reflected by the comparison between K-MAL and EFP 1.0. In

fact, these two configurations both use Kripke structures as e-states and implement

mA∗ [Baral et al., 2015]. Nevertheless, K-MAL generally outperforms EFP 1.0

as shown in Table 5.1.

Alternative Transition Functions

Enriched mAρ Update As mentioned above, EFP 2.0, besides implementing

the language mAρ, allows the user to exploit two different transition functions.

The first one is fully described in Chapter 4, in particular in Definition 4.4. This

transition function allows to describe agents with several attitudes and to solve

domains where concepts such as trust and lies are involved. The performances of

the planner while using this transition function are almost identical with respect

to P-MAR on domains that can be solved by both configurations. On the other

hand, domains where this transition function “full potential” is required cannot be

solved by other configurations. That is why, for the sake of readability, we will not

report any experimental comparison for the transition function of Definition 4.4

and other EFP 2.0 configurations. Nonetheless, the enriched semantics of mAρ has

been implemented in EFP 2.0 that is now able to tackle families of problems that

consider complex aspects such as doxastic reasoning, lying agents, faulty perception,

etc. Let us note that Figures 4.2 to 4.6 are automatically generated by the planner

and, therefore, constitute examples of execution.

One of our main interests is to compare the expressive power of the new semantics

with other approaches in the literature. To this end, we tested a small variation

of the Grapevine domain (that, even though it does not fully explore the newly

5. Comprehensive Multi-Agent Epistemic Planners 117

introduced concepts, comprises elements such as misconception and lies) on both

EFP 2.0 and the planner RP-MEP introduced in Muise et al. [2015]. The latter

firstly encodes an MEP problem into a classical planning problem. Next, the solving

phase is handled by a classical planner. The results are reported in Table 5.6. The

GR with |AG| = 4, |F| = 16, |A| = 32
d L EFP 2.0 RP-MEP
2

3
21.58 s 9.33 s

4 21.58 s 3189.05 s
≥ 5 21.58 s Time-Out
2

4
409.53 s 9.41 s

4 409.53 s 3201.13 s
≥ 5 409.53 s Time-Out

Table 5.6: Runtimes, in seconds, of the Grapevine (GR) domain with a Time-Out of
1800 s.

comparison shows how RP-MEP outperforms EFP 2.0 when the formulae depth

parameter d is small, due to the efficiency of classical planners. However, since the

size of the encoded classical problem is exponential with respect to d, increasing

the depth of DEL formulae results in efficiency loss on the former solver. On the

other hand, EFP 2.0 scales better when the value of d is increased since the space

required from the latter solver does not depend on such parameter.

Custom Update Models Finally, let us introduce a configuration of EFP 2.0

that takes advantage of diverse factors, that is possibilities, update models, and

agents’ attitudes. While this configuration is not directly derived by some theoretical

innovation, it combines the diverse capabilities of the languages to increase the

functionalities of the planner. In particular, this configuration allows to define

custom update models (Definition 2.2) for Possibilities. These custom update models

allow the user to specify all sorts of behaviors for the actions, making it possible

to capture all the variations in the belief update in epistemology. This level of

customization permits to confront several theories on how the agents’ beliefs must

be updated when, for example, in presence of lies, stubbornness, trust ignorance,

and so on. The e-states update follows the schema presented in Definition 2.3. The

118 5.2. EFP: an Epistemic Forward Planner

specification of custom update models is made through a PDDL-like syntax as we

can see in Listing 5.1. In Listing 5.1, we show how custom event models could be

used to represent the transition function presented in Figure 2.2 while, in Listing 5.2,

we provide an example of instantiated actions in mAρ. Let us note that, for the sake

of simplicity, we unified sensing and announcement under the action type epistemic.

The specification starts with the definition of the single events (the squares nodes

in Figure 2.2) in Lines 1-26. Each event, besides specifying its unique id, is also

characterized by preconditions and postconditions. Both conditions can be a

conjunction of the following, possibly negated, meta-values: act_eff, act_pre

and none. act_eff and act_pre are proxies for the action’s (from which we

are deriving the instantiated update model) effects and preconditions, respectively.

none, on the other hand, is used to explicitly tell that the conditions are empty.

Next, in Line 29, the observability groups are presented. These groups represent

all the possible sets in which agents may belong. An example of this is shown in

Lines 6-8 and 16-18 of Listing 5.2 where the observability of the agents a and b is

defined. The order in which these statements are written matters, as the solver

returns as observability group the first that has its conditions verified—the truth of

such conditions depends on the specific e-state on which they are checked.

Finally, from Line 31 of Listing 5.1, the structure of the event model is described.

Each model, identified by a unique id, specifies which events considers and,

among them, which is the pointed one (the bold nodes in Figure 2.2). Moreover,

the labeled edges of the model are also specified with a syntax of the form

(outgoing_node, incoming_node, label). Listing 5.2 provides an example of

event model instantiation. To be more precise, the action open_a (Lines 3-8),

follows the model Ontic with precondition has_key_a and effects opened. This

means that the event model of this action is comprised of event 4 with postcondition

opened and of event 3. Moreover, agent a always belongs to the Fully group while

b could be in either Fully or Oblivious depending on the value of looking_b.

5. Comprehensive Multi-Agent Epistemic Planners 119

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Events d e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2
3 (event:
4 : id (1) ∗ event " sigma−epistemic "
5 :precondition ($ac t_e f f $)
6 :postcondition (none)
7)
8
9 (event:

10 : id (2) ∗ event " tau "
11 :precondition (not ($ac t_e f f $))
12 :postcondition (none)
13)
14
15 (event:
16 : id (3) ∗ event " e p s i l o n "
17 :precondition (none)
18 :postcondition (none)
19)
20
21 (event:
22 : id (4) ∗ event " sigma−ontic "
23 :precondition (none)
24 :postcondition ($ac t_e f f $)
25)
26
27 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ O b s e r v a b i l i t y Groups ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
28
29 (obs_groups: { Ful ly ; P a r t i a l l y ; Ob l iv ious })
30
31 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Event Models D e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
32
33 (model:
34 : id (Ep i s t em i c) ∗ Sensing − Annoucement Action
35 :events { 1 ; 2 ; 3 }
36 :pointed (1)
37 :edges {(1 , 1 , F u l l y) (2 , 2 , F u l l y) (3 , 3 , F u l l y)
38 (1 , 1 , P a r t i a l l y) (2 , 2 , P a r t i a l l y) (3 , 3 , P a r t i a l l y)
39 (1 , 2 , P a r t i a l l y) (2 , 1 , P a r t i a l l y)
40 (1 , 3 , O b l i v i o u s) (2 , 3 , O b l i v i o u s) (3 , 3 , O b l i v i o u s) }
41)
42
43 (model:
44 : id (Ont ic)
45 :events {4 ;3}
46 :pointed (4)
47 :edges ((4 , 4 , F u l l y) (3 , 3 , F u l l y) (4 , 3 , O b l i v i o u s) (3 , 3 , O b l i v i o u s))
48)

Listing 5.1: The transition function of mA∗ described as custom update template

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Ontic a c t i o n : open_a∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2
3 executable open_a i f has_key_a;

120 5.2. EFP: an Epistemic Forward Planner

4 open_a has_effects opened;
5 open_a has_type Ont ic ;
6 a in_group Ful ly of open_a;
7 b in_group Ful ly of open_a i f look ing_b;
8 b in_group Obl iv ious of open_a;
9

10
11 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Epistemic a c t i o n : shout_tai l_a ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12
13 executable shout_tai l_a i f B(a , t a i l) , t a i l ;
14 shout_tai l_a has_effects t a i l ;
15 shout_tai l_a has_type Epi s t emic ;
16 a in_group Ful ly of shout_ta i l_a ;
17 b in_group Ful ly of shout_tai l_a i f look ing_b;
18 b in_group Obl iv ious of shout_ta i l_a ;

Listing 5.2: Examples of actions definitions with custom update models.

In Listing 5.1 we provided just an example of one possible custom update model.

The advantage of this EFP 2.0 configuration is that is flexible enough to be adopted

to test different update templates. This is useful, especially in combination with the

planner capability of providing a graphical representation of the e-states1, allowing

to better understand how the new update template affects the e-states.

5.2.4 Optimizations and Alternative Search Strategies

Whilst the generality of the planner is of the utmost importance, reducing the search

times, given the inherent complexity of MEP, is also a feature that is essential to

our solver. That is why our final efforts were spent on developing more efficient data

structures and processes of e-state updates along with some domain-independent

heuristics and diverse search methods.

Code Optimizations

This section explores some of the efforts that allowed to optimize the performances

of EFP 2.0. We will not explore in detail such optimizations as this would require

a tedious explanation of all the involved data structures. On the other hand, we

will provide an overall description of the changes followed by several tables that

capture the results of these optimizations.
1Figures 4.2 to 4.6 are generated thanks to this functionality.

5. Comprehensive Multi-Agent Epistemic Planners 121

Thanks to the Valgrind profiler [Nethercote and Seward, 2007] we were able to

identify which operations of EFP 2.0 spent most of the resources (time and memory).

We noticed that, surprisingly, these operations were not complex tasks linked to

epistemic reasoning but were related to string operations. We made use of string

as internal ids for the various data structures of the planning process without

realizing that such data type can bring severe overheads on C++ programs. That

is why we restructured the planner so that it would make use of dynamic_bitset,

provided by the library Boost [Schling, 2011], as internal ids instead of strings.

This change affected most of the planner code but provided excellent results in terms

of time and memory performances optimization as we can see in Tables 5.7 to 5.10

for the Time consumption, in seconds, and Tables 5.11 to 5.14 for the Memory

consumption, in MB. Let us note that the changes only affected the underlying

data structures and did not modify the search process. This means, that the two

approaches shared the same search-tree topology when solving the same instance

thus indicating that the improvements derived from the new data structure. As

before, all the experiments were performed on a 3.60GHz Intel Core i7-4790 machine

with 32GB of memory. Moreover, we will use:

• EFP 2.0: to indicate the configuration of EFP 2.0 before the conversion of the

data structures;

• EFP 2.1: to indicate the optimized planner; and

• %: to indicate the percentage of resources “saved” by EFP 2.1 with respect to

EFP 2.0.

122 5.2. EFP: an Epistemic Forward Planner

CB with ∥AG∥ = 3, ∥F∥ = 8, ∥A∥ = 21
L EFP 2.0 EFP 2.1 %
2 0.002 0.001 9.2
3 0.017 0.015 15.5
5 0.355 0.249 32.5
6 3.000 2.283 24.9
7 8.000 6.233 22.8

Table 5.7: Time consumption, in seconds, of EFP 2.0 and EFP 2.1 on the Coin in the
Box (CB) domain.

AL with ∥AG∥ = 2, ∥F∥ = 4, ∥A∥ = 6
d EFP 2.0 EFP 2.1 %
2 0.080 0.047 40.9
3 0.087 0.051 40.8
4 0.120 0.069 41.9
5 0.498 0.297 40.3
6 2.000 1.450 40.7
7 26.543 15.690 40.8
8 150.827 90.982 39.7
9 1689.322 1003.420 40.6
C 0.101 0.055 45.0

Table 5.8: Time consumption, in seconds, of EFP 2.0 and EFP 2.1 on the Assembly
Line (AL) domain.

GR with ∥AG∥ = 3, ∥F∥ = 9, ∥A∥ = 24 GR with ∥AG∥ = 4, ∥F∥ = 12, ∥A∥ = 42
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %
2 0.0301 0.0206 31.4 2 0.221 0.104 52.6
3 0.202 0.132 34.0 3 1.452 0.760 49.6
4 1.374 0.873 36.5 4 10.490 5.248 49.9
5 9.125 5.308 41.8 5 72.228 36.392 49.6
6 22.216 14.000 36.7 6 198.431 98.841 50.2

Table 5.9: Time consumption, in seconds, of EFP 2.0 and EFP 2.1 on the Grapevine
(GR) domain.

5. Comprehensive Multi-Agent Epistemic Planners 123

CC with ∥AG∥ = 2, ∥F∥ = 10, ∥A∥ = 16 CC with ∥AG∥ = 2, ∥F∥ = 14, ∥A∥ = 28
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %
3 0.022 0.016 28.7 3 0.081 0.041 48.5
4 0.035 0.026 25.2 4 0.280 0.165 43.3
5 0.195 0.149 23.3 5 2.371 1.233 48.9
6 0.807 0.622 22.7 6 9.990 6.288 37.1
7 3.311 2.627 20.7 7 48.810 30.026 38.5
CC with ∥AG∥ = 3, ∥F∥ = 13, ∥A∥ = 24 CC with ∥AG∥ = 3, ∥F∥ = 14, ∥A∥ = 24
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %

3 0.166 0.087 47.9
4 0.119 0.087 26.9 4 0.846 0.459 45.7
5 0.864 0.623 27.9 5 14.980 7.950 46.8
6 3.000 1.830 27.5 6 47.330 25.490 46.1
7 23.453 16.816 25.7 7 394.871 201.235 49.0

Table 5.10: Time consumption, in seconds, of EFP 2.0 and EFP 2.1 on the Collaboration
and Communication (CC) domain.

CB with ∥AG∥ = 3,F∥ = 8, ∥A∥ = 21
L EFP 2.0 EFP 2.1 %
2 0.0014 0.0012 9.2
3 3.13 3.75 -18.9
5 104.88 38.97 62.9
6 895.34 387.53 56.7
7 2635.73 1303.63 50.5

Table 5.11: Memory consumption, in MB, of EFP 2.0 and EFP 2.1 on the Coin in the
Box (CB) domain.

SC with ∥AG∥ = 9, ∥F∥ = 12, ∥A∥ = 14
L EFP 2.0 EFP 2.1 %
4 6.72 5.75 14.4
5 11.74 7.78 33.7
6 27.94 13.85 50.4
7 84.45 34.87 58.8
8 286.66 100.63 64.9
9 868.19 313.31 63.9
10 2833.88 1004.46 64.6
11 9242.77 3246.91 64.9

Table 5.12: Memory consumption, in MB, of EFP 2.0 and EFP 2.1 on the Selective
Communication (SC) domain.

124 5.2. EFP: an Epistemic Forward Planner

GR with ∥AG∥ = 3, ∥F∥ = 9, ∥A∥ = 24 GR with ∥AG∥ = 4, ∥F∥ = 12, ∥A∥ = 42
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %
2 12.35 6.91 44.1 2 93.38 20.97 77.5
3 63.52 23.17 63.5 3 698.63 110.03 84.2
4 427.15 138.53 67.6 4 6209.45 962.95 84.5
5 2812.83 897.15 68.1 5 10785.86 5416.12 49.8
6 7758.73 2942.66 62.1 6 10725.18 5409.72 49.6
7 7713.16 5322.13 31.0

Table 5.13: Memory consumption, in MB, of EFP 2.0 and EFP 2.1 on the Grapevine
(GR) domain.

CC with ∥AG∥ = 4, ∥F∥ = 12, ∥A∥ = 40 CC with ∥AG∥ = 2, ∥F∥ = 14, ∥A∥ = 28
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %
3 9.06 4.25 53.1 3 43.36 10.06 76.8
4 14.94 7.04 52.7 4 168.74 29.17 82.7
5 108.59 41.96 61.3 5 1871.65 287.68 84.6
6 541.29 207.84 61.6 6 11634.98 1860.75 84.0
7 2804.42 1123.37 59.9 7 12310.44 4694.33 61.8
CC with ∥AG∥ = 3, ∥F∥ = 13, ∥A∥ = 16 CC with ∥AG∥ = 3, ∥F∥ = 14, ∥A∥ = 24
L EFP 2.0 EFP 2.1 % L EFP 2.0 EFP 2.1 %

3 91.31 17.39 80.9
4 65.33 20.25 69.0 4 564.14 77.31 86.2
5 770.84 203.09 73.6 5 13366.47 1855.17 86.1
6 2909.04 767.28 73.6 6 13270.54 4497.85 66.1
7 10559.78 4750.69 55.0 7 13289.85 4492.25 66.2

Table 5.14: Memory consumption, in MB, of EFP 2.0 and EFP 2.1 on the Collaboration
and Communication (CC) domain.

5. Comprehensive Multi-Agent Epistemic Planners 125

Alternative Search Strategies and Heuristics

As mentioned before, planning on multi-agent epistemic domains is a very complex

task. That is why even if optimizing the solving process is essential, only focusing

on such a task may never allow epistemic planners to become tools suited for

real-life scenarios.

Search Strategies For this reason, we decided to investigate alternative search

strategies that may help in containing the resources needed to solve MEP problems.

In particular, other than the standard Breadth-First Search (BFS), we enriched

EFP 2.1 with other three types of searches. That is, we added the possibility to

solve problems by using: Depth-First Search (DFS), Iterative Depth-First Search

(I-DFS), and Best-First Search. Each of these searches is well-known among

the planning community and, therefore, we will not provide any details on their

implementation. As always Russell and Norvig [2010] propose an excellent review

of the aforementioned topics. In Tables 5.15 to 5.19, we show some empirical

evaluation of BFS, DFS, and I-DFS. As we can see from the results, none of the

approaches is clearly better than the other and, depending on the domain we are

trying to solve, one search strategy may be more advantageous than the others.

Nevertheless, from our results, we can conclude that BFS has the best results in

general and that I-DFS is almost always to prefer to DFS.

CB with ∥AG∥ = 3, ∥F∥ = 8, ∥A∥ = 21
L BFS I-DFS DFS
2 0.001 0.004 0.186
3 0.017 0.022 0.879
5 0.249 0.225 13.894
6 2.287 1.389 139.884
7 6.233 5.445 452.234

Table 5.15: Solving times of the three uninformed searches of EFP 2.1 on the Coin in
the Box (CB) domain.

126 5.2. EFP: an Epistemic Forward Planner

AL with ∥AG∥ = 2, ∥F∥ = 4, ∥A∥ = 6
d BFS I-DFS DFS
2 0.047 0.108 0.016
3 0.052 0.114 0.016
4 0.070 0.138 0.019
5 0.297 0.407 0.031
6 1.452 1.923 0.094
7 15.692 18.724 0.384
8 90.983 115.643 1.693
9 1003.423 1190.613 7.638
C 0.055 0.127 0.019

Table 5.16: Solving times of the three uninformed searches of EFP 2.1 on the Assembly
Line (AL) domain.

SC with ∥AG∥ = 9, ∥F∥ = 12, ∥A∥ = 14
L BFS I-DFS DFS
4 0.006 0.015 0.595
5 0.013 0.043 1.305
6 0.031 0.119 3.493
7 0.085 0.313 10.977
8 0.235 0.828 34.982
9 0.061 2.270 112.461
10 1.604 6.115 365.561
11 4.513 15.985 1190.163

Table 5.17: Solving times of the three uninformed searches of EFP 2.1 on the Selective
Communication (SC) domain.

GR with ∥AG∥ = 3, ∥F∥ = 9, ∥A∥ = 24 GR with ∥AG∥ = 4, ∥F∥ = 12, ∥A∥ = 42
L BFS I-DFS DFS L BFS I-DFS DFS
2 0.021 0.045 1.125 2 0.105 0.024 4.328
3 0.201 0.055 6.664 3 0.760 0.352 35.544
4 0.871 0.278 45.544 4 5.248 2.064 324.338
5 5.3085 2.534 301.848 5 36.391 19.153 64.394
6 14.784 22.817 1001.633 6 98.841 253.634 211.478

Table 5.18: Solving times of the three uninformed searches of EFP 2.1 on the Grapevine
(GR) domain.

5. Comprehensive Multi-Agent Epistemic Planners 127

CC with ∥AG∥ = 2, ∥F∥ = 10, ∥A∥ = 16 CC with ∥AG∥ = 3, ∥F∥ = 13, ∥A∥ = 24
L BFS I-DFS DFS L BFS I-DFS DFS
3 0.016 0.027 0.926 3 0.023 0.082 1.264
4 0.026 0.036 1.886 4 0.0852 0.208 6.289
5 0.179 0.149 15.106 5 0.625 1.765 0.029
6 0.629 0.465 76.496 6 1.835 1.957 290.614
7 2.625 0.995 414.385 7 16.813 11.125 74.776
8 5.312 6.338 1171.427

Table 5.19: Solving times of the three uninformed searches of EFP 2.1 on the
Collaboration and Communication (CC) domain.

Heuristics While BFS, DFS, and I-DFS are all uninformed searches—i.e., they

traverse the space using only information derived by the search-tree and not from

the e-states themselves—Best-First Search selects, at each step, the best state,

that is the one that is, supposedly, closer to the goal. The problem with this last

approach lies in finding a good function to calculate the score of each e-state and,

therefore, in understanding which e-state is the best one. These functions, known as

heuristics, have been deeply studied in the planning community and are, nowadays,

a standard concept. To avoid unnecessary clutter we will not discuss the theoretical

basis of this concept addressing the interested reader to Russell and Norvig [2010],

Keyder and Geffner [2008] for an exhaustive presentation of the topic.

As mentioned, the poor scalability of epistemic reasoners is an important issue.

Being the community relatively new, it is normal that most of the research efforts

are put into investigating the foundation of the problem rather than optimizing

what already exists. Nonetheless, having tools that, most of the time, have not

acceptable performances (with respect to classical planning, for example) limits

the proliferation of the solvers themselves. It is paramount, in our opinion, to

focus on the optimization of existing tools in order to have competitive epistemic

reasoners that can be employed by other researchers or even in real-world scenarios.

This would allow the community to gain more momentum and grow even faster.

To better understand how heuristics may help in scaling the solving process we

report, in Table 5.20, the comparison between the fastest configuration of EFP 2.1

128 5.2. EFP: an Epistemic Forward Planner

while using BFS and the same configuration while exploiting the perfect heuristic

(P-Heur). This heuristics represents the theoretical optimal we can hope to achieve

and, therefore, provides an excellent example of the potential of Best-First search.

P-Heur is assumed to always be able to derive the exact distance between an

e-state and the goal in constant time. Since we (unfortunately) do not have access

to such information, we emulated such behaviour by pre-computing the search-

space beforehand—this operation is not accounted for in the solving time—and

associating to each state its actual distance to the goal. While this is not really

helpful in optimizing the search2, it allows us to understand how well the solver

could perform with the right heuristics.

CC with ∥AG∥ = 3,F∥ = 15, ∥A∥ = 42
L EFP 2.1 P-Heur
3 0.16 0.06
4 1.07 0.07
5 28.73 0.09
6 118.60 0.13
7 1427.35 0.16

Table 5.20: Comparison between the solving times of an uninformed search (EFP 2.1) and
the theoretical optimal informed one (P-Heur) on the Collaboration and Communication
(CC) domain.

That is why, as the final contribution to EFP 2.1, we decided to focus on formalizing

some domain-independent heuristics for MEP. First of all, we implemented a module,

called heuristics_manager, that allows the planner to make use of heuristics as

black boxes. This allows any interested researcher to simply implement their

heuristics and directly test it on EFP 2.1, without having to know in detail the

solver structure. Moreover, we also formalized two diverse domain-independent

heuristics for MEP problems: the number of satisfied sub-goal and an updated

version of the epistemic planning graph presented in Le et al. [2018]. While these

two heuristics are completely formalized, they are yet to be fully implemented.
2This process requires to explore the whole search-tree before even starting to plan.

5. Comprehensive Multi-Agent Epistemic Planners 129

The first is a very simple heuristic that simply associates an higher evaluation to

e-states that satisfy more sub-goals. To better improve this heuristic we also

defined functions that allows “to break” complex goals into a conjunction of

simpler ones. That is, being each goal simply a belief formula that needs to

be satisfied, we devised a way of producing more sub-goals from a single one to

better distinguish between e-states.

The second heuristic we envisioned is an updated version of the epistemic

planning graph, that stems from a combination of the one presented in Le et al.

[2018] and concepts derived from the ASP solver presented in the next section.

This new planning graph is independent of the chosen e-state representation,

making it available for every EFP 2.1 configuration (except for the one where

custom update models are considered). While, as mentioned, we do not have

a complete implementation of this feature yet, we can provide the theoretical

details of its formalization.

First of all, let us quickly introduce the concept of planning graph in classical

planning. A far more detailed and precise introduction to this topic can be found

in Russell and Norvig [2010, chapter 10]. A planning graph is a special data structure

used to generate heuristics using an algorithm called GRAPHPLAN. Intuitively a

planning graph (Figure 5.2) is a directed graph organized into levels: first, a level S0

for the initial state, consisting of nodes representing each fluent literal that holds in

S0; then a level A0 consisting of all the ground actions that might be applicable in S0;

then, alternating, a level Si followed by Ai; until we reach a termination condition. A

more formal characterization of this structure is presented in Definition 5.1:

130 5.2. EFP: an Epistemic Forward Planner

(a) Problem description.

(b) Planning graph of the problem in Figure 5.2a.

Figure 5.2: Example of a planning graph. Images extrapolated from Russell and Norvig
[2010, chapter 10].

Definition 5.1: Planning Graph

Given a planning problem P = ⟨D, I,G⟩, the planning graph of P is an
alternate sequence of state levels and action levels S0, A0, . . . , Sk, Ak, . . . where

• S0 represents I;

• for i ≥ 0,

– Ai is the set of actions executable in Si; and
– Si+1 = Si ∪

(︂⋃︁
a∈Ai

Φ(Si, a)
)︂
. Where Φ is the transition function in

P .

A planning graph gives important information about the problem in polynomial

time. The idea is that, despite the possible errors, the level j at which a fluent literal

first appears is a good estimate of how difficult it is to achieve that fluent literal

from the initial state. Other important properties of the planning graph are that:

the estimation is always correct when it reports that the goal is not reachable; and

that it never overestimates the number of steps, generating an admissible heuristic.

The termination of the construction of the planning graph (when the search space

is finite) is also guaranteed through saturation. While the state levels are “easily”

5. Comprehensive Multi-Agent Epistemic Planners 131

defined in the classical settings, the same is not true in the epistemic scenario. In

fact, simply putting all the fluent literals in the states would not capture enough

information, and using complete e-states would result in a massive overhead, given

that they are graph-like structures and their manipulation is very resource-heavy.

The epistemic planning graph (ePG 1.0) presented in Le et al. [2018] solved this

problem by defining each state level as a set of partial Kripke structures. This

allowed capturing enough information without aggravating the ePG 1.0 resource

consumption. Nonetheless, this choice did not allow ePG 1.0 to work whenever a

goal with negated beliefs was requested by the problem. To overcome such problem

we decided to re-design the state level in a new version of the planning graph, called

ePG 2.0. In particular, we envisioned a state level that is comprised of a set of

instantiated belief formulae associated with a Boolean value. These formulae are

all the ones that appear in the domain description, i.e., single fluent literals, initial

descriptions, goals, actions preconditions, actions effects, observability conditions,

and so on. More practically, we envisioned the state level to be formed by two maps

P and Q. The former associates the extrapolated belief formulae to either True

or False, while the latter associate each fluent literal to a Boolean value.

Before providing more information on how ePG 2.0 may be used to compute e-

states score we need to present how the entailment (to check for action executability

and other conditions) and the execution of an action work in this structure. Let

us start by giving the definition of entailment.

Definition 5.2: ePG 2.0 Entailment

Given a state level Si, its relative maps Pi and Qi and a belief formula φ we
have that Si |∼ φ (where |∼ indicates the entailment in ePG 2.0) if:

• φ is fluent literal or its negation: Qi associates φ to ⊤; or

• φ is a belief formula: Pi associates φ to ⊤.

Since each fluent and each formula in ePG 2.0 is associated with a Boolean value, we

have that the entailment is simply derived by reading such values. This means that

whenever an information is associated to true in state level, then that information

132 5.2. EFP: an Epistemic Forward Planner

is entailed by the level. On the other hand, if a fluent or a formula is associated

to false in a level, then it is not entailed in that level.

We can now explain how an action execution works in ePG 2.0. Given an

executable3 action a and a state level Si we have that a could potentially set to

true the Boolean value associated with any fluent literal4 or belief formula. It is

important to notice that once any entry of the two maps is set to True, it will

always maintain this status. This behavior emulates the insertion of fluent literals

in the states level in the classical version of the planning graph. Intuitively, if the

effects of an action consider a fluent literal f then the update will check if this

fluent, its negation, or the belief formulae that have this f as part of their argument,

can be set to True. To check whether a fluent literal (or its negation) is verified

after the execution of an action it is not too intricate. In fact, a fluent can only

be manipulated by ontic actions which clearly state the new value of the fluent

literal they consider. That is, if an ontic action makes the fluent literal f True than

Q[f] = ⊤, otherwise, if the action sets f to be False, we will have Q[¬f] = ⊤. A

more precise definition of this procedure is illustrated in Algorithm 2.

Algorithm 2: Fluent value updater
Input :Q //The map ⟨fluent, bool⟩ of Si

a //The action executed on Si

Output :Q //The updated version of the input map
1 //Note that ℓ may also be a negated fluent
2 for fluent ℓ in Q.get_keys() do
3 if Q[ℓ].get_value() == ⊥ then
4 //An effect is considered if its condition are True
5 if a.get_effects().contains(ℓ) then
6 Q[ℓ].set_value(⊤)
7 end
8 end
9 end

10 return Q

3An action is executable in a state level Si if its executability conditions are entailed by Si.
4Let us remember that each fluent literal and its negation are independent and are considered

as separate entries in Q.

5. Comprehensive Multi-Agent Epistemic Planners 133

Contrarily to the fluent literals check, determining whether a belief formula is

verified after an action execution is not straightforward. The first complication

resides in the fact that an action verifies an infinite number of belief formulae

considering all the possible beliefs chains. That is why, we need to check only

the belief formulae of interest, i.e., the ones contained in P. For the sake of

the readability we will not attempt to describe how this check works using plain

text, instead, we will make use of a much more concise pseudo-code. Algorithm 3

is the function that manages this update. In particular, Algorithm 4 presents

this procedure for ontic actions while Algorithm 5 shows the one for sensing

and announcement actions.

Algorithm 3: Check belief formula after action execution
Input :P //The map ⟨belief_formula, bool⟩ of Si

a //The epistemic action executed on Si

Output :P //The updated map ⟨belief_formula, bool⟩ of Si

1 for belief_formula bf in P.get_keys() do
2 if P [bf].get_value() == ⊥ then
3 if P [bf].get_type() == ontic then
4 //Call to Algorithm 4
5 bool res = check_bf(bf, a, P)
6 else
7 //Call to Algorithm 5
8 bool res = check_bf_epi(bf, a, P , 0)
9 end

10 end
11 P [bf].set_value(res)
12 end
13 return P

134 5.2. EFP: an Epistemic Forward Planner

Algorithm 4: Check belief formula after ontic execution
Input : bf //The belief formula to verify

P //The map ⟨belief_formula, bool⟩ of Si

a //The ontic action executed on Si

Output :⊤ or ⊥ //Depending on the updated value of P [bf]
1 if P [bf].get_value() == ⊤ then
2 return ⊤
3 end
4

5 if bf.get_base_fluents().contains_one(a.get_effects()) then
6 if bf.get_type() == fluent_formula then
7 //For simplicity, assume fluent formulae of one fluent
8 P [bf].set_value(⊤)
9 return ⊤

10 else if bf.get_type() == single_ag_belief then
11 if fully_obs.contains(bf.get_agent()) then
12 //Recursive call to this function
13 return check_bf(bf.get_nested_bf(), a, P)
14 end
15 else if bf.get_type() == group_formula then
16 if fully_obs.contains(bf.get_group_agents()) then
17 //Recursive call to this function
18 return check_bf(bf.get_nested_bf(), a, P)
19 end
20 else
21 /∗Disjunction and conjunction of belief formulae follow

the standard semantics of these operators∗/
22 end
23 end
24 return ⊥

5. Comprehensive Multi-Agent Epistemic Planners 135

Algorithm 5: Check belief formula after epistemic execution
Input : bf //The belief formula to verify

P //The map ⟨belief_formula, bool⟩ of Si

a //The ontic action executed on Si

x //Label used to differentiate scenarios
Output :⊤ or ⊥ //Depending on the updated value of P [bf]

1 if P [bf].get_value() == ⊤ then
2 return ⊤
3 end
4

5 //We check also for negated effects for the Partial observers
6 if bf.get_base_fluent().contains_one_or_negated(a.get_effects()) then
7 if bf.get_type() == fluent_formula then
8 if a.get_effects().contains(bf.get_base_fluent()) and x == 0 then
9 return ⊤

10 else if x == 1 then
11 return ⊤
12 else
13 return ⊥
14 end
15 else if bf.get_type() == single_ag_belief then
16 if fully_obs.contains(bf.get_agent()) then
17 if x == 2 then
18 x = 1
19 end
20 return check_bf(bf.get_nested_bf(), a, P, x)
21 else if partially_obs.contains(bf.get_agent()) then
22 return check_bf(bf.get_nested_bf(), a, P, 2)
23 else if bf.get_type() == group_formula then
24 if fully_obs.contains(bf.get_group_agents()) then
25 return check_bf(bf.get_nested_bf(), a, P, 0)
26 else if partially_obs.contains_one(bf.get_group_agents()) then
27 return check_bf(bf.get_nested_bf(), a, P, 2)
28 else
29 /∗Disjunction and conjunction of belief formulae follow

the standard semantics of these operators∗/
30 end
31 end
32 return ⊥

136 5.2. EFP: an Epistemic Forward Planner

To summarize, the construction of the planning graph is comprised of the

following steps:

• First of all we build the initial state level, i.e., S0, where the maps P0 and Q0

will associate all the belief formulae of interest (the ones found in the domain

description) and all the fluent literals (also negated) to the Boolean value

False.

• We, then, check the conditions that are used to generate the initial state and

set to true all the beliefs formulae and fluent literals that are verified in this

e-state.

• After that, we iteratively execute the following procedure until the goal is

satisfied by one of the state levels or we reach a fixed point5:

– We check if the state level entails all the goal conditions. If it does, we

found the goal.

– If the goal is not found we then execute all the executable actions on the

state level producing a new one.

– If the new state differs, i.e., has some new verified fluent literals or belief

formulae, we reiterate the procedure, otherwise we reached the fixed

point and we conclude that the problem cannot be solved.

Finally, once the planning graph has been built, we can extrapolate useful infor-

mation following standard approaches presented in Le et al. [2018].

5A fixed point is reached whenever a state level and its successor are identical.

5. Comprehensive Multi-Agent Epistemic Planners 137

5.3 PLATO: an Epistemic Planner in ASP

In this section, following the idea originally proposed in Baral et al. [2010], we

explore the use of logic programming, in the form of Answer Set Programming

(ASP), to provide a novel implementation of a multi-agent epistemic planner. In

particular, we present an actual implementation of a multi-shot ASP-based planner,

called PLATO (ePistemic muLti-agent Answer seT programming sOlver), that can

reason on domains described using mAρ. The interest in this research direction

derives from the desire of having a planner which is usable, efficient, and yet

encoded using a declarative language. The ASP paradigm enables a concise and

elegant design of the planner, with respect to other imperative implementations,

facilitating the development of formal verification of correctness. In particular,

the declarative encoding allows us to provide formal proofs of results correctness,

which are presented later in this chapter. Moreover, the planner, exploiting an

ad-hoc epistemic state representation and the efficiency of ASP solvers, maintains

competitive performance results on benchmarks collected from the literature.

5.3.1 Modeling MEP using ASP

Let us now present the details of the multi-shot ASP encoding for a multi-agent

epistemic planning domain D = ⟨F ,AG,A, φini, φgoal⟩ (Definition 1.15) upon the

possibilities based semantics described in Section 2.2. Its core elements are the

entailment of DEL formulae, the generation of the initial state, and the transition

function. The encoding implements a breadth-first search exploiting the multi-shot

capabilities of clingo by Gebser et al. [2019].

Epistemic states

Let us start by defining how an e-state, and specifically a possibility, is defined

in PLATO. To do that, following Definition 2.9, we need to encode the possible

worlds and the agents’ beliefs. We use atoms of the form pos_w(T, R, P) and

believes(T1, R1, P1, T2, R2, P2, AG), respectively. Intuitively, the first atom

138 5.3. PLATO: an Epistemic Planner in ASP

identifies a possibility with the triple (T, R, P), while the second encodes an “edge”

between the possibilities (T1, R1, P1) and (T2, R2, P2), labeled with the agent AG.

Let us now focus in more detail on pos_w(T, R, P). P is the index of the

possibility. The variables T and R represent the time and the repetition of the

possibility P, respectively. It is important to notice that these two parameters are

necessary to uniquely identify a possibility during the solving process. The first

parameter tells us when P was created: a possibility with time T is created after the

execution of an action at time T. At a given time, it could be the case that two (or

more) possibilities share both the values of T and P. Thus, a third value, the repetition

R, is introduced with the only purpose to disambiguate between these cases. The

update of repetitions will be explained during the analysis of the transition function.

Intuitively, the index P is used during the generation of the initial state to name

the initial possible worlds. Afterward, when an action is performed, we create new

possibilities by updating the values of T and R. We do not need to modify the value of

P as well, since the update of time and repetition is designed to be univocal for each P.

Let i be an agent and u and v be two possibilities represented by the triples

(Tu, Ru, Pu) and (Tv, Rv, Pv), respectively. Then, we encode the fact that v ∈ u(i)

with the atom believes(Tu, Ru, Pu, Tv, Rv, Pv, i).

The truth value of each fluent is captured by an atom of the form holds(Tu, Ru,

Pu, F). The truth of this atom captures the fact that u(F) = 1. Finally, we specify

the pointed possibility, for a given time T, using atoms of the form pointed(T, R,

P). For readability purposes, in the following pages, we will identify a possibility u

by Pu rather than by the triple (Tu, Ru, Pu) when this will cause no ambiguity.

Entailment

To verify if a given belief formula (Definition 1.10) F is entailed by a possibility,

we use the predicate entails(P, F) that follows Definition 2.11, defined below

5. Comprehensive Multi-Agent Epistemic Planners 139

(with some simplifications for readability).

entails (P, F) :- holds(P, F), fluent(F).
entails (P, neg(F)) :- not entails(P, F).
entails (P, and(F1, F2)) :- entails(P, F1), entails(P, F2).
entails (P, or(F1, F2)) :- entails(P, F1).
entails (P, or(F1, F2)) :- entails(P, F2).
not_entails (P1, b(AG, F)) :- not entails(P2, F), believes(P1, P2, AG).
entails (P, b(AG, F)) :- not not_entails(P, b(AG, F)).
not_entails (P1, c(AGS, F)) :- not entails(P2, F), reaches(P1, P2, AGS).
entails (P, c(AGS, F)) :- not not_entails(P, c(AGS, F)).

The encoding makes use of an auxiliary predicate not_entails to check whether

a given formula F is not entailed by a possibility P1. For formulae of the type b(AG,

F) we require that all of the possibilities believed by AG entail F. Similarly, for

formulae of the type c(AGS, F) (where AGS represents a set of agents) we require

that all of the possibilities reached by AGS entail F. A possibility P1 reaches P2 if it

satisfies the following rules (where contains/2 is defined by a set of facts):

reaches(P1, P2, AGS):-believes(P1, P2, AG), contains(AGS, AG).
reaches(P1, P2, AGS):-believes(P1, P3, AG), contains(AGS, AG), reaches(P3, P2, AGS).

Initial state generation

As mentioned above, following Son et al. [2014], we assume the initial state to model

a finitary S5-theory. This means that the formulae that shape the initial state have

a constrained structure. While detailed descriptions of such formulae are explored in

Son et al. [2014], let us only provide a high-level characterization of these formulae

for the sake of simplicity. Let ψ be a fluent formula, f ∈ D(F) be a fluent, i ∈ D(AG)

be an agent, and let us use AG instead of D(AG) for the sake of readability. Consider

a mAρ statement of the form [initially φ] ∈ D; we have five cases:

(i) φ ≡ f/¬f: f must (not) hold in the pointed possibility.

(ii) φ ≡ CAG(f/¬f): f must (not) hold in each possibility of the initial state.

(iii) φ ≡ CAG(ψ): if ψ is a fluent formula that is not a fluent literal, then it must

be entailed from each possibility of the initial state.

140 5.3. PLATO: an Epistemic Planner in ASP

(iv) φ ≡ CAG(Bi(ψ) ∨ Bi(¬ψ)): there can be no two possibilities u and v such

that v ∈ u(i) and ψ is entailed by only one of them. Intuitively, this type of

formula expresses the fact that agent i believes whether ψ is true in the initial

state.

(v) φ ≡ CAG(¬Bi(ψ) ∧ ¬Bi(¬ψ)): this type of formula expresses the fact that

agent i does not believe whether ψ is true or false in the initial state. Hence,

given a possibility u, there must exist v ∈ u(i) such that u |= ψ and v ̸|= ψ (or

u ̸|= ψ and v |= ψ).

Formulae of types (i)– (iii) are used to build the fluent sets of the possible worlds

within the initial state. A fluent f is initially known if there exists a statement

[initially CAG(f)] or [initially CAG(¬f)]. In the former case, all agents will believe

that f is true, whereas in the latter that f is false. If there are no such statements

for f, then it is said to be initially unknown. Let uk be the number of initially

unknown fluents: we consider 2uk initial possible worlds, addressed by an integer

index P ∈ {1, . . . , 2uk}, one for each possible truth combination of such fluents.

For each initial possibility P and each initially known fluent F, we create an atom

holds(0, 0, P, F)6, since it is common belief between all agents that F is true

(we deal with negated fluents similarly). Moreover, through the atoms holds we

generate all the possible truth combinations for initially unknown fluents and we

assign each one of them to an initial possibility. We require all the combinations to

be different, thus each initial possibility represents a unique possible world.

An initial possibility is said to be good if it entails all of the formulae of type

(iii). We create a possible world pos_w(0, 0, P) for every good initial possibility

P. The initial pointed possibility is specified by pointed(0, 0, PP), where PP is

the (unique) good initial possibility that entails all of the type (i) formulae. Finally,

formulae of type (iv) are used to filter out the edges of the initial state. Let P1 and

P2 be two good initial possibilities; the atom believes(0, 0, P1, 0, 0, P2, AG)

holds if there are no initial type (iv) formulae ψ such that P1 and P2 do not agree
6Let us note that we use 0 to indicate the initial state time parameter.

5. Comprehensive Multi-Agent Epistemic Planners 141

on ψ. The construction of the initial state is achieved by filtering out the edges of a

complete graph—i.e., being G the set of good initial possibilities, ∀u ∈ G,∀i ∈ AG

we have that u(i) = G. We can observe that type (v) formulae do not contribute to

this filtering, hence we do not consider them in the initial state generation.

Transition function

The transition function calculates the resulting state after the execution of an action

at time T > 0. mAρ makes use of three distinct types of actions—ontic, sensing,

and announcement (Definition 2.12)—but for all of them the implementation of

executability conditions is the same. For example, suppose that at time T we execute

the ontic action act: the statement [act causes f if φ] tells us that in order to

apply the action effect f on a possibility u we first need to satisfy the condition

u |= φ. To this end, we introduced the predicate is_executable_effect(T, ACT,

T2, R2, P2, E). If such an atom holds, then it denotes that the effect E of the

action ACT performed at time T is executable in the possibility (T2, R2, P2). Without

loss of generality, we represent an action instance by a unique action (using fresh

actions names). Let us describe how we have modeled these actions in ASP.

Ontic actions Let ACT be an ontic action executed at time T and let u =

(T-1, RP, PP) be the pointed possibility at time T-1. Intuitively, when an ontic

action is executed, the resulting possibility u′ is calculated by applying the action

effects on u and also on the possibilities w ∈ u(i), for each fully observant agent i;

and so on, recursively. Hence, we apply the action effects to all of the possibilities

w that are reachable with a path labeled with only fully observant agents (briefly

denoted as fully observant path). This concept is key to understand how the possible

worlds are computed. Then pos_w (short for possible_world) is defined as follows:

pos_w (T, R2 + MR + 1, P2):-
pointed(T-1, RP, PP), pos_w(T2, R2, P2), T2<T,
reaches(T-1, RP, PP, T2, R2, P2, AGS), subset(AGS, FACT).

where MR is the maximum value of the parameter repetition among all the possibilities

at time T-1 and FACT represents the set of fully observant agents of ACT. Hence, if

142 5.3. PLATO: an Epistemic Planner in ASP

(T2, R2, P2) is a possibility that is reachable by a fully observant path at time T-1,

then we create a new possibility (T, R2 + MR + 1, P2). When the body of the rule is

satisfied, we say that P2 is updated. For short we will refer to the updated version

of P2 as P2′. The time corresponds to the step number when the possibility was

created; the repetition is calculated by adding to R2 the maximum repetition found

at time T-1, plus one; finally, P2 is the name of the new possibility.

The pointed possibility at time T is pointed(T, 2*MR+1, PP). Notice that,

since the maximum repetition at time 0 is 0 (by construction of the initial state) and

since at time T we set the repetition of the pointed possibility to 2*MR+1, it follows

that the maximum repetition at each time is associated with the pointed possibility

itself. In this way, we can always create a unique triple of parameters for each new

possibility. At the moment, the plans that PLATO can handle in reasonable times

have lengths that limit the exponential growth of such value within an acceptable

range. In fact, even for the largest instance that was tested on EFP 2.1, the length of

the optimal plan was less than 20 (PLATO could not find a solution for such instance

before the timeout). Nonetheless, we plan a more efficient design of the update of

the repetition values through hashing functions or bit maps that would limit the

growth of the repetition to a polynomial rate. This would achieve a polynomial

growth of the repetition value, allowing the solver to handle much longer plans.

Next, we must state which fluents hold in the new possibilities. For each

fluent F that is an executable effect of ACT, we impose holds(P2′, F) (and similarly

for negative effects). The remaining fluents will hold in the updated possibility

only if they did in the old one.

Finally, we deal with the agents’ beliefs. Let P1, P2 be two updated possibilities

and let AG be a fully observant agent. If believes(P1, P2, AG) holds, we impose

believes(P1′, P2′, AG). Otherwise, if AG is oblivious, we impose believes(P1′,

P2, AG) exploiting the already calculated possibility P2 to reduce the number

of pos_w atoms.

5. Comprehensive Multi-Agent Epistemic Planners 143

Sensing/Announcement actions As shown in Definition 2.12 behavior of

sensing and announcement actions are similar. The generation of the possible worlds

is also similar to that of ontic actions. Let ACT be a sensing or an announcement

action and let PP and P2 be two possibilities such that PP is the pointed one at

time T-1 and P2 is reachable from PP. We update P2 in the following cases:

(i) P2 = PP (here we also set P2′ as the pointed possibility at time T);

(ii) P2 is reached by a fully observant path and it is consistent with the effects of

ACT;

(iii) P2 is reached by a path that starts with an edge labeled with a partially

observant agent and that does not contain oblivious agents.

The pointed possibility must always be updated to be consistent with the changes,

after an action is performed (that is, we do not want to carry old information

obtained in previous states). Similar to ontic actions, condition (ii) deals with the

possibilities believed by fully observant agents; if i is fully observant, then she must

only believe those possible worlds that are consistent with the effects of ACT. Finally,

condition (iii) deals with partially observant agents: since such an agent is not

aware of the action’s effects, we do not impose P2′ to be consistent with the action’s

effects. Also, we restrict the first edge to be labeled by a partially observant agent

to avoid the generation of superfluous possible worlds (namely, worlds that are

not believed by any agent). In fact, the contribution to the update of the possible

worlds by fully observant agents is entirely captured by condition (ii).

We create a possible world P2′ at time T for each P2 that satisfies one of

the conditions above. Since sensing and announcement actions do not alter the

physical properties of the world, we impose holds(P2′, F) if holds(P2, F), for

each fluent F (inertia).

Let AG be a partially observant agent. If believes(P1, P2, AG) holds, then

we will impose believes(P1′, P2′, AG), since partially observant agents are not

aware of the effects of the action. If AG is fully observant, we also add the condition

144 5.3. PLATO: an Epistemic Planner in ASP

that P1 and P2 are both (or neither) consistent with the effects of the actions.

The purpose of this condition is twofold: first, we update the beliefs of the fully

observant agents; second, we maintain the beliefs of partially observant agents

with respect to the beliefs of the fully observant ones. We deal with oblivious

agents exactly as for ontic actions.

Optimizations

To minimize the amount of ground pos_w atoms, we designed the function so that

it reuses, whenever possible, an already computed possibility. In this way, we

efficiently deal with the beliefs of oblivious agents.

We were also able to significantly speed up the initial state generation by

imposing a complete order between the initial possible worlds with respect to their

fluents. Specifically, let P1 and P2 be two initial possibilities. Let MFi = #max {

F : holds(Pi, F), not holds(Pj, F) }, with i ̸= j. Then we impose that if

P1 < P2, then it must also hold that MF1 < MF2. Since it could be the case that there

exist finitely many initial states, by implementing this constraint we are able to

generate a unique initial state while discarding the (possible) other equivalent ones.

Multi-shot encoding

Following the approach of Gebser et al. [2019] we divided our ASP program into

three main sub-programs, where the parameter t stands for the execution time of

the actions: (1) base: it contains the rules for the generation of the initial state

(t = 0), alongside with the instance encoding; (2) step(t): it deals with the plan

generation (t > 0) and with the application of the transition function; and (3)

check(t): it verifies whether the goal is reached at time t ≥ 0.

The sub-program check(t) contains the external atom query(t) that is used

in the constraint: :- not entails(t, R, P, F), pointed(t, R, P), goal(F),

query(t). The atom query(t) allows the solver to activate the constraint above

only at time t (with the method assign_external) and to deactivate it when

we move to time t + 1 (method release_external). Using the Python script

provided by Gebser et al. [2019], we first ground and solve the sub-program base

5. Comprehensive Multi-Agent Epistemic Planners 145

and we check if the goal is reached in the initial state (t = 0); in the following

iterations, the sub-programs step(t) (t > 0) are ground and solved; we check

the goal constraint until the condition is satisfied.

5.3.2 Experimental Evaluation

In this Section we compare PLATO to the multi-agent epistemic planner EFP 2.1.

All the experiments were performed on a 3.60GHz Intel Core i7-4790 machine with

32 GB of memory and with Ubuntu 18.04.3 LTS, imposing a time out (TO) of

25 minutes and exploiting ASP’s parallelism on multiple threads. All the results

are given in seconds. From now on, to avoid unnecessary clutter, we will make

use of the following notations:

• L: the length of the optimal plan;

• d: the upper bound to the depth of nested modal operators B in the DEL

formulae;

• K-BIS/P-MAR: the solver EFP 2.1 using the best configuration based on

Kripke structures and possibilities, respectively;

• single/multi: PLATO using the single-shot/multi-shot encoding, respec-

tively;

• many/frumpy: multi using the clingo’s configuration many/frumpy, respec-

tively;

• bis: multi implemented with a visited state check based on bisimulation

(following the implementation by Dovier [2015]).

We report only the results of the clingo’s search heuristic configurations many

and frumpy as they were the most performing ones in our set of benchmarks.

Although generally they show similar behaviors, as shown in Table 5.21a, in larger

instances the time results differ substantially. In the results, when only multi is

specified, we considered the most efficient configuration on the specific domain.

146 5.3. PLATO: an Epistemic Planner in ASP

SC: ||AG|| = 9, ||F|| = 12, ||A|| = 14

L many frumpy K-BIS P-MAR
4 .24 .24 .03 .007
6 2.56 2.49 .16 .04
8 36.79 38.34 4.23 .30
9 204.52 146.343 5.79 .83
10 TO 839.27 7.36 1.78

(a) Runtimes for Selective Communication
(SC).

GR: ||AG|| = 3, ||F|| = 9, ||A|| = 24

L Total Ground Solve Atoms
3 .97 .60 .36 28’615
4 4.25 2.24 2.01 42’022
5 32.83 2.52 30.31 71’482
6 211.69 5.27 206.41 140’305
7 1066.80 16.94 1049.86 302’623

(b) Runtimes for Grapevine (GR).

CB: ||AG|| = 3, ||F|| = 8, ||A|| = 21

L multi bis K-BIS P-MAR
2 .11 .11 .006 .001
3 .20 .24 .10 .02
5 1.21 4.21 1.44 .37
6 6.69 31.82 14.62 2.93
7 46.48 278.80 38.26 6.99

(c) Runtimes for Coin in the Box (CB).

AL: ||AG|| = 2, ||F|| = 4, ||A|| = 6

d multi K-BIS P-MAR
2 14.89 .42 .07
4 15.63 .64 .11
6 15.96 13.51 2.44
8 17.55 883.87 150.92
C 128.02 .43 .08

(d) Runtimes for Assembly Line
(AL).

CC_1: ||AG|| = 2, ||F|| = 10, ||A|| = 16 CC_2: ||AG|| = 3, ||F|| = 13, ||A|| = 24

L single multi K-BIS P-MAR single multi K-BIS P-MAR
3 48.74 6.52 .08 .02 153.76 14.07 .13 .03
4 188.32 8.74 .16 .03 TO 28.02 .54 .10
5 TO 7.68 1.14 .16 TO 16.13 4.89 .60
6 1222.67 10.83 4.42 0.64 TO 14.84 12.66 1.71
7 TO 30.08 16.06 2.61 TO 56.48 142.06 12.37

(e) Runtimes for Collaboration and Communication (CC).

Table 5.21: (a) Comparison of frumpy, many and EFP 2.1 on SC. (b) Total, grounding
and solving times for GR using multi. The last column reports the number of ground
atoms. (c) Comparison of multi and bis on CB. (d) Comparison of PLATO and EFP 2.1
on AL (C identifies that the executability conditions are expressed through common
beliefs). (e) Comparison of single, multi and EFP 2.1 on CC.

To evaluate the behavior of PLATO with respect to the entailment of DEL

formulae, we exploited the AL domain (Table 5.21d), where the executability

conditions of the actions have depth d. The entailment of belief formulae with

higher depth is handled efficiently by PLATO, although the use of common beliefs

in the executability conditions leads to worse results. This is because the number

of reached atoms is substantially higher than the number of believes atoms

(required in the entailment of C and B formulae, respectively). Notice that in

ASP the entailment of each formula, independently from its depth, is handled by a

ground atom and, therefore, a higher depth does not impact the solving process. On

the other hand, the entailment in EFP 2.1 is handled by exploring all the paths of

5. Comprehensive Multi-Agent Epistemic Planners 147

length d of the state, causing higher cost performances during each entailment check.

To investigate the contribution of the grounding and solving phases, we summed

the computation times of the clingo functions ground() and solve() for each

iteration. Table 5.21b shows a major contribution of the solving phase, hence

indicating an efficient grounding. This permitted us to consider larger instances and

to compete with other imperative approaches. The implementation of bisimulation

within the multi-shot encoding leads to less efficient results (as shown in Table 5.21c),

due to a much heavier contribution of the grounding phase.

Finally, we compare the single-shot/multi-shot encodings in Table 5.21e. The

latter approach leads to significantly better results: the clingo’s option –stat

revealed a smaller number of conflicts in the majority of the benchmarks. As

explained by Gebser et al. [2019], this is due to the reuse of nogoods learned

from previous solving steps.

5.3.3 Correctness of PLATO

Declarative languages such as ASP allow a high-level implementation, facilitating

the derivation of formal verification of correctness. Considering a domain D; we

denote the set of the belief formulae that can be built using the fluents in D(F) and

the propositional/modal operators by D(BF). We denote the transition function

of PLATO by Γ : D(AI) × D(S) → D(S) ∪ {∅} (where D(AI) and D(S) are

defined as in Definition 1.15). Finally, we express the entailment with respect to

mAρ and PLATO with |=Φ and |=Γ, respectively. Each main component of the

planner is addressed by one proposition among Propositions 5.1 to 5.3. Proofs

of these properties are reported in Appendix A.5.

Proposition 5.1: PLATO Entailment Correctness

Given a possibility u ∈ D(S) we have that ∀ψ ∈ D(BF) u |=Φ ψ iff u |=Γ ψ .

Proposition 5.2: PLATO Initial State Construction Correctness

Given two possibilities u, v ∈ D(S) such that u is the initial state in mAρ and
v is the initial state in PLATO then ∀ψ ∈ D(BF) u |=Φ ψ iff v |=Γ ψ.

148 5.3. PLATO: an Epistemic Planner in ASP

Proposition 5.3: PLATO Transition Function Correctness

Given an action instance a ∈ D(AI) and two possibilities u, v ∈ D(S) such that
∀ψ ∈ D(BF) u |=Φ ψ iff v |=Γ ψ then ∀ψ ∈ D(BF) Φ(a, u) |=Φ ψ iff Γ(a, v) |=Γ
ψ.

These results allowed us to verify the empirical correctness of the planner EFP 2.1.

In all of the conducted tests, the two planners exhibited the same behavior. In the

same way, PLATO can be used to verify empirically the correctness of any multi-

agent epistemic planner that is based on a semantics equivalent to the one of mAρ.

Finally, as the plan existence problem in the MEP setting is undecidable [Bolander

and Andersen, 2011], all the planners that reason on DEL are incomplete. Since

infinitely many e-states could be potentially generated during a planning process,

in general, both EFP 2.1 and PLATO are unable to determine if a solution for a

planning problem exists (even when checking for already visited states).

Nothing in life is as important as you think it is when
you are thinking about it.

— Daniel Kahneman
Thinking, Fast and Slow

[Kahneman, 2011]

6
“Fast and Slow” Epistemic Planning

Contents
6.1 Background . 149

6.1.1 Theories of Human Decision Making 151
6.1.2 AI Thinking, Fast and Slow 153

6.2 MEP System-1 and System-2 153
6.2.1 Meta-cognition . 156

6.3 A Fast and Slow Epistemic Architecture 159
6.3.1 E-PDDL: Standardized MEP Problems Language 159
6.3.2 The Overall Architecture 165

6.1 Background

Artificial Intelligence-based systems have been the focal point of computer science

research in the last years. This led to the creation of several automated tools and

successful applications that are pervading our everyday life. Nonetheless, most of

these systems can be considered instances of narrow AI : i.e., they are, generally,

focused on a limited set of abilities and goals. Ultimately, these approaches are

becoming more and more efficient in dealing with their pre-established areas of

interest thanks to improved algorithms and techniques, and also, especially in the

case of Machine Learning (ML) systems, thanks to the availability of huge datasets

149

150 6.1. Background

and computational power [Marcus, 2020]. On the other hand, all of these tools

still lack many capabilities that, we humans, naturally consider to be included

in a notion of “intelligence”. Examples of these capabilities are generalizability,

robustness, explainability, causal analysis, abstraction, common sense reasoning,

ethical reasoning, as well as a complex and seamless integration of learning and

reasoning supported by both implicit and explicit knowledge. That is why the

majority of the AI community is attempting to address these current limitations and

it is trying to create systems that display more “human-like qualities”. One of the

central debates is whether end-to-end neural networks or symbolic and logic-based

AI approaches alone can achieve this goal or whether we need to integrate these

techniques to achieve the desired AI system.

We believe the integration route to be the most promising. This idea is also

supported by several results that have been obtained along this line of work.

For example, Marcus [2020] argues that symbolic and logic-based reasoning is

paramount to improve the robustness of AI systems. As pointed out in Besold et al.

[2017], Kotseruba and Tsotsos [2020], several research groups are building “hybrid”

approaches that use both machine learning and symbolic reasoning techniques,

employing a so-called neuro-symbolic AI approach.

We argue that a better comprehension of how humans have, and have evolved to

obtain, these advanced capabilities can inspire innovative ways to imbue Artificial

Intelligence systems with these competencies. More precisely, we analyzed some

of these theories, with a special focus on the theory of thinking fast and slow

presented by Kahneman [2011], and attempted to translate them into an AI

environment, conjecturing that this will lead to an advancement in machines

capabilities. This chapter gives a brief and high-level overview of this general

approach, providing also an early implementation of a “hybrid” AI architecture

that focuses on the MEP setting.

6. “Fast and Slow” Epistemic Planning 151

6.1.1 Theories of Human Decision Making

According to the book “Thinking, Fast and Slow” by Kahneman [2011], humans’

decision-making processes are guided by the cooperation of two capabilities, that,

are referred to as “Systems”. In particular, System-1 provides tools for intuitive,

imprecise, fast, and often unconscious decisions (“thinking fast”), while System-2

handles more complex situations where logical and rational thinking is needed to

reach a complex decision (“thinking slow”). The former is guided mainly by intuition

and experience rather than deliberation and allows to quickly formulate answers

to very simple questions. Such answers may be sometimes wrong, mainly because

of unconscious biases or because they rely on shortcuts, and usually come with no

explanation. However, System-1 is able to build models of the world that, although

inaccurate and imprecise, can fill the knowledge gaps through causal inference and

allow us to respond reasonably well to the many stimuli of our everyday life. A

typical example of a task handled by System-1 is finding the answer to a very

simple arithmetic calculation, or reaching out to grab something that is going to

fall. We use our System-1 about 95% of the time when we need to make a decision.

On the other hand, whenever the problems to be solved starts to become too

demanding, System-2, thanks to the access to additional “computational resources”

and rational/logical thinking, is the one that is in charge of their resolution. A

typical example of a problem handled by System-2 is solving a complex arithmetic

calculation, or a multi-criteria optimization problem. To do this, humans need to

be able to recognize that a problem goes beyond a threshold of cognitive ease and

therefore they need to activate a more global and accurate reasoning machinery.

Hence, introspection is essential in this process.

Other than the idea of problem difficulty System-1 and System-2 discern which

problem they should tackle based on the experience accumulated on the problem

itself. That is, when a new non-trivial problem has to be solved, it is handled

by System-2. However, certain problems over time, and therefore after having

accumulated a certain amount of experience, pass on to System-1. The reason

is that the procedures used by System-2 to find solutions to such problems also

152 6.1. Background

accumulate examples that System-1 can later use readily with little effort. A typical

example is reading text in our native language. However, this does not happen

with all tasks, e.g., finding the correct solution to complex arithmetic questions.

Finally, Kahneman theorizes that System-2 may employ heuristics to facilitate the

exploration of the search space, especially when this is very large. These heuristics

could derive from System-1 and usually help in focusing the attention only on the

most promising parts of the space, allowing System-2 to work with manageable

time and space. Thanks to this “structure”, humans are able to consider diverse

levels of abstraction, adapt, and generalize their experiences while also being able

to multi-task when using their System-1. We envisioned System-2 to be sequential,

given that it requires full attention, limiting the number of complex problems that

can be solved by humans in parallel to one. Let us note, however, that System-1

and System-2 are not systems in the multi-agent sense, but rather they encapsulate

two wide classes of information processing.

Kahneman’s theory gives a detailed account on how we make decisions, while

others conjecture what are the reasons behind the evolution of our reasoning scheme—

e.g., Harari [2015] identifies the ability to conceive and communicate high-level

stories as one of the main reasons. Nevertheless, in most of these theories it is clear

that the notions of consciousness and abstraction are important to identify the traits

of intelligence. These provide the ability to consciously focus attention on a limited

set of features, while deferring others, to process a specific task in depth. Graziano

[2013], Graziano et al. [2020] envisioned two forms of consciousness in human

beings: the I-consciousness (I for Information) and the M-consciousness (M for

mysterious). The first one refers to the ability to solve (possibly complex) problems,

by recognizing necessary processing steps in specific (even new) contexts, to tackle a

desired problem. Again, these concepts seem to intertwine with Kahneman’s theory.

The former could be seen as another way to identify System-2 since it has to do

with considering a problem and harnessing the relevant faculties of our cognition

to devise a plan to solve it. The latter refers to our ability to build a simplified,

approximate, and subjective model of peoples’, both ourselves and others, minds,

6. “Fast and Slow” Epistemic Planning 153

beliefs, and intentions. Such low-fidelity model building can be linked to System-1,

as System-1 is able to form a rapid but usually inexact model of the world.

6.1.2 AI Thinking, Fast and Slow

The theories described in the previous paragraph, as well as their connections, shed

some light on which competencies provide humans the ability to solve a diverse

set of simple and complex problems; understand broad contexts robustly; adapt

readily; and ultimately cooperate. These competencies are, arguably, what makes

our intelligence broad, in opposition to the narrow one displayed by modern AI

systems. This difference makes arise several interesting research questions about

the capabilities that AI systems should include in the future. The “Blue Sky” paper

by Booch et al. [2021] reports some of these questions. In this chapter, we will focus

on the first and part of the fifth research questions posed by Booch et al.. Namely:

1. “Should we clearly identify the AI System-1 and System-2 capabilities? What

would their features be? Should there be two sets of capabilities or more?”

5. “How do we model the governance of System-1 and System-2 in an AI? When

do we switch or combine them? Which factors trigger the switch? [. . .]”

While the authors of the Blue Sky paper did not define these research objectives

for any particular AI system, in this chapter we will try to address them in the

Multi-agent Epistemic Planning setting.

6.2 MEP System-1 and System-2

Two of the prominent lines of work in AI, i.e., machine learning and symbolic

reasoning, seem to embody (even if loosely) the two Systems presented above. In

particular, ML is a data-driven approach to AI and shares with System-1 its ability

to build (possibly imprecise and biased) models from sensory data. Perception

activities, such as seeing, that in humans are handled by System-1, are currently

addressed with machine learning techniques in AI. However, some traits of System-1

do not seem to be present, at least for now, in ML. Examples of these are the ability to

154 6.2. MEP System-1 and System-2

grasp basic notions of causality and common-sense reasoning. Similarly, System-2’s

capability to solve complex problems using a knowledge-based approach is somewhat

emulated by AI techniques based on logic, search, and planning, that make use

of explicit and well-structured knowledge. While the parallelism ML–System-1

and logic programming–System-2 represents a starting point in developing an

automated fast and slow AI, we should not assume these two techniques to be

the exclusive representative of the respective System.

In what follows, we will try to give a characterization of both a System-1 and

a System-2 transposition to automated tools, referred to as solvers for brevity.

We will start with general definitions of such solvers only to present, later in

the chapter, actual implementations of System-1 and System-2 reasoners in the

epistemic setting. We will make use of three models to represent key modules of our

abstract Reasoner1. In particular, the model of self is used to store the experience

of the architecture, the model of the world contains the knowledge accumulated

by the system over the external environment and the expected tasks, while the

model of others contains the knowledge and beliefs about other agents who may

act in the same environment. Finally, the model updater acts in the background

to keep all models updated as new knowledge of the world, of other agents, or

new decisions are generated and evaluated.

The general characterization of a System-1 solver, triggered immediately when

the problem is presented to the Reasoner, does not require many factors.

• These solvers are assumed to rely on the past experience of the Reasoner itself.

• Moreover, we assume that the running time for System-1 approaches to be

independent of the input and, instead, to depend on the experience accumulated

by the overall architecture, in the model of self.
1We will use this term to indicate an abstract entity that acts as a proxy for an architecture

that contains and manages various System-1 and System-2 solvers. Let us imagine the Reasoner
to be an artificial version of the human body which has its low-level reasoning capabilities defined
by various System-1 and System-2.

6. “Fast and Slow” Epistemic Planning 155

• Finally, we consider a System-1 solver to be an entity that relies on “intuition”

(with a slight abuse of notation).

Considering these characteristics, the next question that naturally arises is can

MEP ever be considered as a System-1 task, considering that epistemic planners,

in literature, always rely on look-ahead strategies? We considered some ideas that

could help us develop a System-1 epistemic planner. Among those, only a few

were not using search methods (intensively) but rather mostly relied on experience.

Finally, we identified a feasible, yet functional, way to exploit experience in the

epistemic planning setting. The idea is to make use of pre-computed plans; that

is, System-1 can be used to determine which of the plans already generated by

past experiences is the one that “fits the best” the current problem. Of course,

determining if an already computed plan is a good choice or not for the current

problem is a difficult research question on its own. Since the focus of this last

chapter is to devise an overall fast and slow architecture for epistemic planning

rather than optimizing its internal components, we decided to use a very simple

criterion to select the best fitting plan. In particular, System-1 selects, among

past solutions for the same domain, the pre-computed plan that satisfies the most

number of sub-goals of the problem that is being tackled. Let us remark that this

is just an early-stage idea that could certainly be enriched and optimized.

Our Reasoner is a System-1-by-default architecture: whenever a new problem

is presented, a System-1 solver with the necessary skills to solve the problem

starts working on it, generating a solution and a confidence level. This allows to

minimize the resource consumption making use of the much faster System-1 solving

process when there is no need for System-2—that is when the solution proposed

by System-1 is “good enough”. Nevertheless, as for the human brain, System-1

may encounter problems that it cannot solve, either due to its lack of experience

or the inherent intricacy of the problem itself. These situations require, then,

the use of more thought-out resolution processes, generally provided by System-2

approaches. Notice that we do not assume System-2 solvers to be always better

than System-1 solvers: given enough experience, some tasks could be better solved

156 6.2. MEP System-1 and System-2

by System-1 solvers. This behavior also happens in human reasoning [Gigerenzer

and Brighton, 2009]. In the particular case of MEP, we can consider as System-2

solving procedures the tools that employ traditional planning strategies. These

can be, for example, the planner RP-MEP presented by Muise et al. [2015] and

EFP 2.1 presented in Chapter 5. While these two solvers adopt different strategies

to solve a Multi-agent Epistemic Planning problem, they both explore the search

space and do not rely on experience.

6.2.1 Meta-cognition

One of the research questions posed by Booch et al. [2021] asks how “do we model

the governance of System-1 and System-2 in an AI?”. To address this we decided

to focus on the idea of meta-cognition as firstly defined by Flavell [1979], Nelson

[1990]. This means that we want our Reasoner to be equipped with a set of

mechanisms that would allow it to both monitor and control its own cognitive

activities, processes, and structures. The goal of this form of control is to improve

the quality of the system’s decisions [Cox and Raja, 2011]. Meta-cognition models

have been largely studied [Cox, 2005, Kralik et al., 2018, Kotseruba and Tsotsos,

2020, Posner, 2020] in the past years. Among the various proposed modalities, we

envisioned our Reasoner to have a centralized meta-cognitive module that exploits

both internal and external data and arbitrates between System-1 and System-2

solvers. Let us note that this module is structurally and conceptually different from

an algorithm portfolio selection [Kerschke et al., 2019, Tarzariol, 2019].

We propose a meta-cognitive (MC) module that itself follows the thinking fast

and slow paradigm. This means that our MC module is comprised of two main

phases: the first one takes intuitive decisions without considering many factors,

while the second one is in charge of carefully selecting the best solving strategy,

considering all the available elements whenever the first phase did not manage to

return an adequate solution. We will refer to the former with MC-1 and to the

latter with MC-2. MC-1 defines the System-1 part of the metacognitive process

and, therefore, it activates automatically as a new task arrives. This module is

6. “Fast and Slow” Epistemic Planning 157

in charge of deciding whether to accept the solution proposed by the System-1

solver or to activate MC-2. MC-1 takes this decision considering the confidence of

the System-1 solver: if the confidence, which usually depends on the amount of

experience, is high enough, MC-1 adopts the System-1 solver’s solution.

If MC-1 decides that the solution of the System-1 solver is not “good enough”,

it engages MC-2. Intuitively, this module needs to evaluate whether to accept the

solution proposed by the System-1 solver or which System-2 solver to activate for

the task. To do this, MC-2 compares the expected reward for the System-2 solver

with the expected reward of the System-1 one: if the expected additional reward

of running the System-2 solver, compared to the System-1 one, is large enough,

then MC-2 activates the System-2 solver. MC-2, following the human reasoning

model [Shenhav et al., 2013], is designed to avoid costly reasoning processes unless

the additional cost is compensated by an even greater expected reward for the

solution that the System-2 solver will devise.

In what follows, we try to provide a “concrete” view of the System-1/System-2

framework for the Multi-agent Epistemic Planning setting. The MC-1 schema

does not require a graphical visualization given that it only has to execute one

decision. The same is not true for MC-2. That is why we will present a schematic

view of this module in Figure 6.1. In the schema we will make use of the following

notations for the sake of readability:

• Planner-1 and Planner-2 indicate the planners RP-MEP [Muise et al., 2015]

and EFP 2.1, respectively.

• Sys1 represents the solution obtained by the System-1 solver.

• The variables d and limits are given as input.

• R(S) represents a formula that computes the reward of choosing the solver S.

This formula is fully characterized by Ganapini et al. [2022]. Since we want

our schema to be at an intuitive level we will not provide further details.

158 6.2. MEP System-1 and System-2

• Finally, the methods to simplify the problems are, at the moment, to restrict

the belief formulae depth or to eliminate some sub-goals.

Max Depth d

Resource
Consumption

< limitsNo

Sub-correct
solutions
allowed

Yes

Semplificate
the problem

Validate solution and update the `Table', i.e., the experience, that

contains `` difficulty,planner resources" data for future usages

Good enough
Solution?

No
Done

Estimate problem Difficulty using of fluents, agents, actions, etc.

(This value only depend on the input and not on the solver).

Dynamic
Common

Knowledge

Yes

Yes

No

No

Estimate the Resources Consumption of Pla w.r.t. the Difficulty
of the problem using past experiences.

No

Opt-Out

Is
R(Pla) > R(Sys1)

Yes

Simplificate

the problem

Pla = Planner-1 Pla = Planner-2

Yes

Sys1 Pla

No

Yes

Problem Parsing

Figure 6.1: The schema of MC-2.

6. “Fast and Slow” Epistemic Planning 159

6.3 A Fast and Slow Epistemic Architecture

In this section, we will provide a description of an early implementation of the

architecture described before. This tool can be found at https://github.com/

FrancescoFabiano/MetacognitiveEpistemicPlanning and, while tries to emu-

late the behavior discussed in the previous sections, it also adopts some simpli-

fications given that is still a premature version. Nonetheless, this tool is able to

accomplish the basic functionalities and we believe it to be an excellent starting

point to analyze the thinking fast and slow paradigm in MEP. Moreover, we

envisioned this architecture to be easily modified by the other research groups,

which can easily inject new (System-1/System-2) solvers and modify the MC

modules to create a well-structured epistemic reasoner that will benefit from all

the community research efforts.

6.3.1 E-PDDL: Standardized MEP Problems Language

As the first step in implementing our architecture, we addressed the problem of

having a unified specification language. In fact, it is necessary that problems can be

“understood” by all the solvers that could potentially tackle them. Over the years,

the MEP community has developed multiple approaches with varying behaviors and

specification languages. And while the diversity of approaches has led to a deeper

understanding of the problem space, the community now lacks a standardized way

to specify MEP problems. To address the situation, we propose a unified input

description language for the epistemic setting, namely the Epistemic Planning

Domain Definition Language or E-PDDL for short. Consequently, E-PDDL will

represent the input for our meta-cognitive architecture.

E-PDDL, as the name clearly shows, inherits its foundations from one of the

most adopted action languages: PDDL. The field of planning has seen many repre-

sentations. For example, in classical planning, there was STRIPS [Fikes and Nilsson,

1971], Action Description Language (ADL) [Pednault, 1994] and SAS+ [Bäckström,

1995] before Planning Domain Description Language (PDDL) [McDermott et al.,

1998, Fox and Long, 2003] standardized the notations. Nowadays, planners routinely

https://github.com/FrancescoFabiano/MetacognitiveEpistemicPlanning
https://github.com/FrancescoFabiano/MetacognitiveEpistemicPlanning

160 6.3. A Fast and Slow Epistemic Architecture

use PDDL for problem specification even if they may convert to other representations

later for solving efficiency [Helmert, 2009]. PDDL envisages two files, a domain

description file which specifies information independent of a problem like predicates

and actions, and a problem description file which specifies the initial and goal states.

In PDDL, a planning environment is described in terms of objects in the world,

predicates that describe relations that hold between these objects, and actions that

bring change to the world by manipulating relations. A problem is characterized

by an initial state, together with a goal state that the agent wants to transition

to, both states specified as configurations of objects. When planning is used for

epistemic reasoning, the objects in the problem can be physical (real-world objects)

as well as abstract (knowledge and beliefs).

Let us now present E-PDDL, making use of the Coin in the Box domain

(Planning Domain 2.1) to better explain some of the features. Let us remark that

the syntax has been chosen with the objective of minimizing the difference with

standard PDDL while providing a general epistemic input language. We will start

by showing the syntax of the problem-domain—that contains the general settings

of the problem—and then we will illustrate how a problem-instance—that contains

specific objects, initial conditions, and goals—is characterized. In particular, in

Listings 6.1 we present the characterization of the Planning Domain 2.1 problem-

domain and in Listings 6.2 we present a simple problem-instance where it is known

that agent a has the key and the goal is for a to know the coin position. Before

proceeding with the description of the E-PDDL syntax we need to introduce the

meaning of the operator “[i]” where i ∈ AG. This operator captures the modal

operator Bi. For example, in Line 10 of Listing 6.1, the formula [?i](has_key ?i)

reads “agent i knows has_key_i” where i ∈ AG and the fluent has_key_i encodes

the fact that i has the key. When the operator is of the form “[α]” where α ⊆ AG

and |α| ≥ 2 then it captures the idea of common belief.

6. “Fast and Slow” Epistemic Planning 161

Problem Domain

First of all, let us note that in Listings 6.1 the actions signal and distract are

omitted to avoid clutter. In fact, these actions are world-altering and, therefore,

share a similar structure with the action open.

Following the PDDL syntax Fox and Long [2003], we start the problem-domain

definition by introducing the name and the requirements of the problem (Lines 1

and 2 of Listings 6.1, respectively). We included a new requirement called :mep

to identify the need for E-PDDL. Lines 4-5 introduce the predicates following the

PDDL standard. A small variation is the object-type agent that does not need to

be defined and it is used to define variables that capture the acting agents.

From Line 7 to Line 14 the action open is introduced. The action’s definition

starts with its name (Line 7) and its type (Line 8). The concept of action type

is inherited from mAρ and, for now, is restricted to be one among ontic, sensing,

or announcement since these are the accepted variations of actions in the MEP

community. Alternatively, if the user is using EFP 2.1 and defined some custom

event model, their ids could be used. Next, in Line 9 and Line 10, respectively, the

action’s parameters and preconditions are defined. The parameters have the same

role that they have in PDDL, that is they are used to associate the variables of

the action’s definition with an object type. Similarly, also the field preconditions—

identified by any belief formula—follow the standard PDDL meaning. After the

preconditions, the action specifies the effects. Finally, the last field of the action

open is about the observers. This field is used to indicate which agents are fully

observant, i.e., knows about the execution and the effects of the action. Knowing

which agent is observant is useful to derive how the beliefs of the agents are updated

after the action is been executed. To better characterize the set of observant agents

we introduced the operator diff that allows to “isolate” the executor of the action

(since the executor needs to be observant and should not depend on other factors).

For example, the condition in Lines 12-13 reads as: “the agent i, i.e., the executor, is

fully observant” and “for every agent j ̸= i if j is looking then j is fully observant”.

The same schema is used to define partial observers, the ones that are aware of

162 6.3. A Fast and Slow Epistemic Architecture

the action execution but do not know the results of such action, with the field

p_observers; an example of partial observability is at Lines 22-23.

1 (define (domain co in inthebox)
2 (:requirements : s t r ips :negative−preconditions :mep)
3
4 (:predicates (opened) (t a i l)
5 (has_key ? i − agent) (l ook ing ? i − agent)))
6
7 (:action open
8 :act_type o n t i c
9 :parameters (? i − agent)

10 :precondition ([? i] (has_key ? i))
11 : e f f e c t (opened)
12 :observers (and (? i) (f o r a l l (d i f f (? j − agent) (? i))
13 (when (l ook ing ? j) (? j))))
14)
15
16 (:action peek
17 :act_type s e n s i n g
18 :parameters (? i − agent)
19 :precondition (and ([? i] (opened)) ([? i] (l ook ing ? i)))
20 : e f f e c t (t a i l)
21 :observers (? i)
22 :p_observers (f o r a l l (d i f f (? j − agent) (? i))
23 (when (l ook ing ? j) (? j)))
24)
25
26 (:action announce
27 :act_type announcement
28 :parameters (? i − agent)
29 :precondition ([? i] (t a i l))
30 : e f f e c t (t a i l)
31 :observers (and (? i) (f o r a l l (d i f f (? j − agent) (? i))
32 (when (l ook ing ? j) (? j))))
33)
34)

Listing 6.1: E-PDDL Coin in the Box problem-domain.

The introduced fields are tailored for implicit belief update, namely a transition

function that automatically updates the e-states without having to know the

list of belief formulae that have been verified or negated. This is the case of

mAρ, which derives how to structurally update the e-state knowing action type,

observability relations, and which properties of the world have been modified.

Later in this section, we will also explain how, with the presented syntax, it is

possible to generate a valid input also for those planners that need the effects

of the action to be completely explicit.

6. “Fast and Slow” Epistemic Planning 163

Problem Instance

In Listings 6.2 we present an example of an E-PDDL problem-instance. In Line

1 and in Line 2 the problem-instance name (i.e., toyinstance) and the related

problem-domain name are defined, respectively.

Next, in Line 3, the object type agent values are defined. In this particular

instance, we defined three agents a, b and c as in Planning Domain 2.1.

Following, in Line 4, the depth is specified. The concept of depth of a belief

formula is used to identify the number of nested epistemic operators. For example,

given two agents i and j the belief formula Bi(φ) has depth 1 while Bi(Ci,j(φ)) has

depth 2. This field is introduced to accommodate the need for certain planners, e.g.,

RP-MEP, to limit the depth of the belief formulae. RP-MEP relies on grounding

the formulae into classical planning “facts” that without bound on these formulae

could be infinite. On the other hand, the limit on depth is ignored by the planners,

e.g., EFP, that reason directly on epistemic states.

Lines 5-12 present the belief formulae that describe the initial state. The

formulae are considered to be in conjunction with each other. The initial conditions

only require to specify when a fluent is true and consider false whichever fluent

is not specified (Line 5). Moreover, the initial conditions are also used to specify

what is known in the initial state (Line 6-12). While the belief formulae in this

field can be of any type, let us remark that Son et al. [2014] demonstrated that

to create a finite number of epistemic states from a set of formulae, this set must

respect a finitary S5 logic and therefore the beliefs must be expressed in terms

of common belief. This means that if the initial conditions do not comply with

a finitary S5 logic the planners that construct the initial epistemic state from

the given specification may not work.

Finally, in Line 13 the conjunction of belief formulae that represent the goals is

defined.

164 6.3. A Fast and Slow Epistemic Architecture

1 (define (problem t oy in s tance)
2 (:domain co in inthebox)
3 (:agent a b c)
4 (:depth 2)
5 (: i n i t (t a i l s) (has_key a) (l ook ing a)
6 ([a b c] (has_key a))
7 ([a b c] (not (has_key b)))
8 ([a b c] (not (has_key c))))
9 ([a b c] (not (opened)))

10 ([a b c] (l ook ing a))
11 ([a b c] (not (l ook ing b)))
12 ([a b c] (not (l ook ing c))))
13 (:goal ([a] (t a i l s)))
14)

Listing 6.2: E-PDDL Coin in the Box problem-instance.

From Implicit to Explicit Belief Update

Since we tailored E-PDDL syntax to represent actions with implicit belief update

we need to explain how E-PDDL itself is a suitable language also for those planners,

e.g., RP-MEP, that need the belief update to be explicit. That is, we need a

standard way of deriving the explicit agents’ belief update from an E-PDDL

action description. While deriving explicit belief update is not a method that

is embedded in the language itself in what follows we propose the strategy that

we adopted in our implemented parser.

The strategy that we adopted in our parser is based on the transition function

by Baral et al. [2015] where the idea of agents’ observability is used to derive

consistent agents’ beliefs about the actions’ effects and/or execution. In what follows

we present a belief derivation schema that, starting from the agents’ observability,

generates the explicit belief update related to a single action. These updates

generate all the belief-chains of finite length ℓ where ℓ ∈ {0, . . . , d} and d is the

value assigned to the field :depth in the problem-instance (in Listings 6.2 d = 2).

Namely, we will have all the following chains:

• a fully observant knows the action’s effect (ℓ = 1);

• a fully observant knows that another fully observant knows the action’s effect

(ℓ = 2);

6. “Fast and Slow” Epistemic Planning 165

• a fully observant knows the chains of length 2 (ℓ = 3);

• and so on until we have that ℓ = d.

Moreover, when partially observant agents are defined we also need to take into

consideration their perspective on the belief update. To do that we will need to

automatically generate the following belief-chains (still limited by the given depth):

• a partially observant knows that any chain of fully observant agents knows

the action’s effect (ℓ = 2); and

• any chain, with ℓ ≤ d − 2, of fully/partially observant knows the chain of

beliefs presented in the previous point.

To better integrate the explicit belief update, we decided to incorporate E-PDDL

with an extra, non-mandatory field for the actions’ specification. This field, identified

by :exp_effect can be used to identify the explicit belief update of the action by

using an arbitrary belief formula. Let us note that when this field is defined it will

completely override the automatically derived belief update for the planners that

make use of explicit belief update, e.g., RP-MEP2. On the other hand, planners that

make use of a full-fledged epistemic transition function, e.g., EFP, will ignore

the :exp_effect field.

6.3.2 The Overall Architecture

Thanks to E-PDDL we are now able to define MEP problems in a standardized

way. Next, we need to take the given input, in E-PDDL, and return a solution to it

using the MC module formalized above. This implementation3 introduces an early

implementation of a System-1 strategy to solve epistemic problems and exploits

already existing planners as System-2 solvers. In particular, the former makes

heavy use of already found plans, returning as a solution the plan that verifies the
2We envisioned this functionality as a way of explicitly providing all the needed effects of the

actions. Nonetheless, in the particular case of RP-MEP, the “experienced” user could just define
the base effects of the actions that would be later compiled by RP-MEP into ancillary effects.

3Available at https://github.com/FrancescoFabiano/MetacognitiveEpistemicPlanning.

https://github.com/FrancescoFabiano/MetacognitiveEpistemicPlanning

166 6.3. A Fast and Slow Epistemic Architecture

major number of sub-goals in the domain. This is still a rudimentary approach

and will certainly be improved over future iterations, but still allows to experiment

with the MC structure. The System-2 planners, used as black boxes, are instead

the planners RP-MEP [Muise et al., 2015]4, and EFP 2.1.

Let us now present a high-level description of the architecture.

• Initially, the tool receives three input files: a domain description in E-PDDL, a

problem instance in E-PDDL, and a context file. The last file contains meta-data,

e.g., resources availability, accuracy required, that emulate the limits represented

by the environment.

• Then the architecture, emulating the MC-1 module, checks whether there is

enough experience to retrieve a plan, from past instances, that solves the problem

respecting the given constraints. If such a plan exists, it is returned as a solution.

• Otherwise, a simplified version of MC-2 is engaged. This part of the architecture

analyzes the problem and, after checking the maximum depth and the presence

of dynamic common belief, selects the best option between Pla-1 (RP-MEP)

and Pla-2 (EFP 2.1).

• After selecting the best approach for the given problem, the tool evaluates the

problem difficulty and derives the expected resource consumption (with respect

to the selected planner).

• Then, the architecture checks if the solving process is within the constraints. If

it is not, the solution from the System-1 solver (if exists) is adopted. On the

other hand, if the estimated time is within the given constraints, the problem

is: (i) translated in the language “understood” by the selected System-2 solver

thanks to our E-PDDL parser; (ii) solved by either Pla-1 or Pla-2; and (iii) then

validated and saved alongside its solution to increase the system’s experience.

4Available at https://github.com/QuMuLab/pdkb-planning.

https://github.com/QuMuLab/pdkb-planning

[...] ἔοικα γοῦν τούτου γε σμικρῷ τινι αὐτῷ τούτῳ

σοφώτερος εἶναι, ὅτι ἃ μὴ οἶδα οὐδὲ οἴομαι εἰδέναι.

I neither know nor think I know. (Paraphrase)

— Socrates
in Plato, Apology [21d]

7
Conclusion

In this dissertation, we presented our research efforts in formalizing and developing

a general and flexible Multi-agent Epistemic Planning environment. The final

goal of this thesis is to deliver an instrument that can be exploited as a basis

for future research on the MEP setting.

We started by illustrating a new epistemic state representation that, alongside

a new and optimized transition function, allowed us to design a comprehensive

epistemic solver with state-of-the-art performances. Doing so, we presented mAρ, an

action language for MEP based on possibilities—a non-well-founded data structure.

mAρ imitates its predecessor mA∗ in defining three types of actions: world-altering,

sensing, and announcements. While these action types allow to describe a vast

range of domains, we decided to enrich mAρ—and consequently, our solver based

on it—in order to capture an even wider spectrum of real-world scenarios. We,

therefore, decided to start by defining one of the fundamental concepts that are

linked to information flows: the idea of trust. This permitted to define how agents

treat incoming information considering the source. We then envisioned a way to

expand our epistemic language even further. We associated each agent to a specific

attitude that varies depending on the world configuration and the information source.

Attitudes enrich the domain description by defining how the agents handle the

various information exchanges. After implementing and validating all the previous

167

168 7. Conclusion

expansions, we formalized a general framework that allows the user to define custom

action types. Thanks to this final step, it is possible to tailor action types without

limitations, making our planner a tool capable of handling all the various epistemic

nuances. Finally, we implemented an initial version of a two phases architecture

that, inspired by a famous cognitive theory, exploits diverse techniques to optimize

the resolution of MEP problems. Once again, we hope that this architecture can be

useful to other researchers who may also complement it with their tools.

While the functionalities described above have been implemented, we believe

that there are still a lot of different research directions that need to be analyzed in

the MEP setting. For example, we believe that it is paramount to study distributed

versions of epistemic solvers. This would allow for a better characterization of

multi-agent scenarios allowing, for example, to better capture secrecy and to make

the planning process more realistic. Another important factor that we did not

explore during our research is the concept of non-deterministic actions. While these

could be “easily” addressed at the search-space level, we believe that it would be

much more appropriate to address them within the single e-state update. Several

other improvements in the formalization could be devised, and we hope that our

framework would help in doing so in future studies. Finally, considering the planner,

we feel like there is still much work to be done. In fact, an important issue for

MEP solvers is their poor scalability. In this dissertation, we put most of our

efforts into investigating the foundation of the problem rather than optimizing

what already existed. Nonetheless, having tools that, most of the time, have not

acceptable performances limit the proliferation of the solvers themselves. That is

why we believe a very important future work is to focus on the optimization of EFP,

making it suitable for real-world tasks. Such optimizations could derive from several

directions: implementation of heuristics (formalized in this thesis), use of parallelism,

adoption of symbolic e-state representations, and so on. Furthermore, we believe

that devising a simple user interface for the aforementioned tools, especially EFP,

will make them more approachable.

Appendices

169

Cred’io ch’ei credette ch’io credesse [...]

I believe he believed that I believed that [...]

— Dante Alighieri
Inferno, XIII, 25-26

A
Propositions Proofs

Contents
A.1 Preliminary Definitions 171
A.2 Proofs of Propositions 2.3 to 2.5 174
A.3 Proofs of Propositions 3.1 and 3.2 179

A.3.1 Updated States Size Finiteness 179
A.3.2 Proofs . 180

A.4 Proof of Proposition 4.1 186
A.5 Proofs of Propositions 5.1 to 5.3 192

A.5.1 Abbreviations . 192
A.5.2 PLATO Entailment Correctness 192
A.5.3 PLATO Initial State Construction Correctness 194
A.5.4 PLATO Transition Function Correctness 196

A.1 Preliminary Definitions

Before starting with the proofs we need to introduce some terminology that will

help us to avoid unnecessary clutter. In particular, let a Domain D, a p ∈ S where

S is the set of all the possibilities reachable from D(φini) with a finite sequence

of action instances, and the set of agents AG ⊆ D(AG) be given. The operator

Bp
AG captures all the reachable possibilities for AG given a starting possibility p.

Let us describe now how this operator can be used to represent the notions of

(i) agents’ belief; (ii) common belief; and (iii) nested beliefs.

171

172 A.1. Preliminary Definitions

Agents Beliefs Representation To link the operator introduced above with

the concept of belief let us start with the case where the set of agents AG contains

only one element i, i.e., AG = {i}. We, therefore, use Bp
i to identify the set of

all the possibilities that i, starting from the possibility p, cannot distinguish. The

construction of the set identified by Bp
i is procedural and it is done by applying the

operator (Bp
i)k, with k ∈ N, until a fixed point is found. The operator (Bp

i)k

is defined as follows:

(Bp
i)k =

⎧⎨⎩p(i) if k = 0
{q | (∃u ∈ (Bp

i)k−1)(q ∈ u(i))} if k ≥ 1

Finally, we can define Bp
i = ⋃︁

k≥1
(Bp

i)k. It is easy to see that this is equivalent to

the set of possibilities reached by the operator Bi starting from p and, therefore,

that it represents the beliefs of i in p.

Let us note that the fixed point of the succession (BS
AG)k is reached in a finite

number of iterations. This is because:

• (BS
AG)k is monotonic; namely (BS

AG)k ⊆ (BS
AG)k+1 with k ∈ N (Lemma A.1);

and

• the set S of all the possibilities reached by applying a finite sequence of

action instances ∆ to a given possibility p has a finite number of elements

(Lemma A.2).

Common Belief Representation Now, similarly to the single-agent case, we can

define the set Bp
AG . This represents the common belief of AG (CAG) starting from p.

As before we introduce the operator (Bp
AG)k of which the fixed point will result in Bp

AG .

(Bp
AG)k =

⎧⎪⎨⎪⎩
⋃︁

i∈AG
p(i) if k = 0

{q | (∃u ∈ (Bp
AG)k−1)(q ∈ ⋃︁

i∈AG
u(i))} if k ≥ 1

A. Propositions Proofs 173

Nested Belief Representation We can also express the concept of nested belief

in a more compact way. Let two sets of agents AG1 ⊆ D(AG),AG2 ⊆ D(AG) be

given; the set of possibilities reachable by applying CAG1CAG2 starting from p is:

Bp
AG1,AG2

= {q | (∃r ∈ Bp
AG1

)(q ∈ Br
AG2

)}

Let us note that, when AG1 or AG2 contains only one agent i, Ci, and Bi are equal.

Lemma 1.1: Operator BS
AG monotony

The sequence (BS
AG) is monotonic; meaning that, for every k ∈ N, (BS

AG)k ⊆
(BS

AG)k+1.

Proof of Lemma A.1 Without losing generality let a possibility p and
an agent i be given. To prove the monotonicity of (Bp

i) we start by recalling
that:

(Bp
i)k ={q | (∃u ∈ (Bp

i)k−1)(q ∈ u(i))}.

By construction, each possibility respects the KD45 logic (Table 1.1) and,
therefore, some structural constraints. In particular, to comply with axioms
4 and 5, if a possibility q ∈ p(i) then q ∈ q(i). In terms of our sequence, this
translates into if a possibility q ∈ (Bp

i)k−1 then q ∈ (Bp
i)k.

It is easy to see that this property ensures that the agent’s reachability
function respect introspection. That is; when an agent reaches q she/he has to
“know” that her/him-self considers q possible. Thanks to this property we can
now infer that each iteration of the sequence (Bp

i)k contains at least (Bp
i)k−1

and, therefore, that the sequence (BS
AG) is monotonic.

Lemma 1.2: States Size Finiteness

Given a finite action instances sequence ∆—namely a plan—and a starting
point p with a finite number of possible worlds, i.e., | ⋃︁

i∈D(AG)
p(i)| = n, the set

S of all the possibilities generated by applying ∆ to p has a finite number of
elements.

174 A.2. Proofs of Propositions 2.3 to 2.5

Proof of Lemma A.2 Following the definition of the transition function
of mAρ (Definition 2.12) we can determine an upper bound for the number
of new possibilities generated after the application of an action instance and,
therefore, of an action instances sequence. In particular, from a given possibility
p such that |Bp

AG| = n (where AG is the set of all the agents) the cardinality of
the set Bp′

AG will be, at most, equal to 2n. That is because:

• when an ontic action is executed each possibility ∈ |Bp
AG| can be either

updated—if reached by a fully observant agent—or kept unchanged—if
reached by an oblivious agent. This means that an upper bound to the
size of Bp′

AG in case of an ontic action execution is 2n where only the
updated possibilities (n) are new elements of S.

• The case with sensing and announcement actions is similar.

This identifies 2n as the upper bound for the growth of a state size and for
the generation of new possibilities after an action execution. Therefore, given
the size n of the initial state and the length of the action sequence l we can
conclude that |S| ≤ (n× 2l) that is indeed finite.

A.2 Proofs of Propositions 2.3 to 2.5

Let us prove the properties illustrated in Propositions 2.3 to 2.5.

As before, in the following proofs, we will use p′ instead of Φ(a, p) to avoid

unnecessary clutter when possible.

Proof of Proposition 2.3 Let us prove each item of Proposition 2.3
separately:

(1) Assuming that action a is executable in u we have that u |= ψ. This means
that:

• If u |= Bx(ψ) we have that ∀p ∈ Bu
x p |= ψ; this is because Bu

x represents
the set of possibilities reachable by Bx starting from u.

• In particular we are interested in the set of possibilities reachable by
Bx starting from u′, i.e., Bu′

x = {p′ | (∃p ∈ Bu
x)(p′ = Φ(p, a))}.

• Following Definition 2.12, we also know that—being x ∈ Fa—if ℓ = fa

then e(a, u) = {f} and therefore p′(f) = 1 ∀p′ ∈ Bu′
x .

• From this last step we can conclude that every element of Bu′
i entails f.

A. Propositions Proofs 175

• As said previously Bu′
x represents Bx starting from u′.

• It is easy to see that if every element in Bu′
x entails f, then u′ |= Bx(f).

(2) As in the previous item, we assume action a to be executable in u meaning
that:

• If u |= By(φ) we have that every p ∈ Bu
y entails φ.

• From Definition 2.12 when y ∈ Oa for each possibility p ∈ Bu
y p(y) = p′(y)

it is easy to see that Bu
y ≡ Bu′

y .

• Given that the two sets of possibilities are the same, it means that the
reachability functions that they represent are the same.

• Being the two functions the same it means that ∀φ ∈ D u |= By(φ) iff
u′ |= By(φ).

(3) Again we assume the executability of the action a and we consider x ∈ Fa

and y ∈ Oa:

• Being y ∈ Oa, from Definition 2.12, we know that p(y) = p′(y) such
that p ∈ Bu

x and p′ is its updated version ∈ Bu′
x .

• This means that for every element in Bu
x we have an updated version

that has the same reachability function for the agent y.

• Then it is easy to see that Bu
x,y ≡ Bu′

x,y and therefore that these two sets
contain the same possibilities.

• As already said in Item (2) when two sets of possibilities are the same
they entail the same formulae.

• Therefore we can conclude that if u |= Bx(By(φ)) then u′ |= Bx(By(φ))

aThe case where a causes ¬f is similar and, therefore, is omitted here.

176 A.2. Proofs of Propositions 2.3 to 2.5

Proof of Proposition 2.4 Once again, let us prove each item separately:

(1) In the following we prove Item (1). Being the proof for Item (2) similar
we will omit it for the sake of readability.

• First of all we identify the set of all the possibilities reached by the
fully observant agents in u as Bu

Fa
and we remind that, as shown in

Paragraph Common Belief Representation, this set corresponds to
the possibilities reached by CFa ;

• We recall that, by hypothesis, u |= f and therefore e(a, u) = {f}.

• We then calculate Bu′
Fa

that, following Definition 2.12, contains only
possibilities p′ such that p′(f) = 1.

• This means that ∀p′ ∈ Bu′
Fa

we have that p′ |= f.

• As shown in Item (1) of Proposition 2.3, given that this set contains
only the possibilities that entail f we can derive that Bu′

Fa
|= f.

• Finally, as the set CFa ≡ Bu′
Fa

, we have that CFa |= f.

(2) The proof of this item is similar to the one presented in Item (1) and it is
omitted for the sake of readability.

(3) Once again we identify the set of the possibilities reachable by partial
observant agents with Bu

Pa
. We also remind that this set is equal to CPa

in u.

• Now to calculate Bu′
Pa

, following Definition 2.12, we apply “Φ(a, u)” to
every element of Bu

Pa
.

• To simplify the proof let us redefine the partially observant agents’
belief update for epistemic actions in the following way:

u′(i) =

⎧⎪⎪⎨⎪⎪⎩
⋃︁

w∈u(i)
Φ(a,w) if i ∈ AG, i ∈ Pa and e(a, u) = e(a,w)⋃︁

w∈u(i)
Φ(a,w) if i ∈ AG, i ∈ Pa and e(a, u) ̸= e(a,w)

Where i ∈ Pa

A. Propositions Proofs 177

• It is easy to identify two disjoint subsets B1
Pa

and B2
Pa

of Bu′
Pa

that
contains only possibility such that:

– B1
Pa
|= e(a, u);

– B2
Pa
̸|= e(a, u);

– (B1
Pa
∪ B2

Pa
) ≡ Bu′

Pa
; and

– (B1
Pa
∩ B2

Pa
) ≡ ∅.

• From these two sets we can now construct the sets B1
Pa,Fa

and B2
Pa,Fa

that are simply the set of possibilities reachable from the fully observant
agents starting from B1

Pa
and B2

Pa
, respectively.

• Given that the set B1
Pa,Fa

resulted from the application of the transition
function from the point of view of fully observant agents, we know from
Item (1) of Proposition 2.3 that for ∀p ∈ B1

Pa,Fa
, p |= f.

• This implies that B1
Pa,Fa

reaches only possibilities where the interpre-
tation of f is true and similarly in B2

Pa,Fa
only possibilities where the

interpretation of f is false.

• This means that B1
Pa,Fa

|= f and B2
Pa,Fa

|= ¬f.

• It is easy to see then that B1
Pa
|= CFaf being B1

Pa,Fa
= {p | p ∈⋃︁

q∈B1
Pa

q(Fa)} (and similarly B2
Pa
|= CFa¬f).

• Finally being Bu′
Pa

= B1
Pa
∪ B2

Pa
we can conclude that Bu′

Pa
|= CFaf ∨

CFa¬fa and therefore u′ |= CPa(CFaf ∨CFa¬f).

(4) To prove this item we will make use of the properties proved in previous
Items.

• As said in the Paragraph Nested Belief Representation, we know
that Bu

Fa,Pa
corresponds with the set of possibilities identified by CFaCPa

and it is also equal to {p | (∃q ∈ Bu
Pa

)(p ∈ ⋃︁
i∈Fa

q(i))}.

• Now to calculate Bu′
Fa

we apply Definition 2.12 to every element of Bu
Fa

.
This means that Bu′

Fa
= {p′ | (∃p ∈ Bu

Fa
)(p′ = Φ(a, p))}.

• We then want to calculate the set {p′ | (∃q′ ∈ Bu′
Fa

)(p′ ∈ ⋃︁
i∈Pa

q′(i))}.

• To calculate the “point of view” of the partially observants with respect
to the fully observants we apply Definition 2.12 to all the elements of

178 A.2. Proofs of Propositions 2.3 to 2.5

{p | (∃q′ ∈ Bu′
Fa

)(p ∈ Bq
Pa

)}.

• It is easy to see that the resulting set is {p′ | (∃q′ ∈ Bu′
Fa

)(p′ ∈⋃︁
i∈Pa

q′(i))} ≡ Bu′
Fa,Pa

.

• We showed, in the previous item, that the set Bu′
Pa

entails CFaf∨CFa¬f.

• This means that Bu′
Fa,Pa

|= (CPa((CFaf ∨ CFa¬f)) and therefore,
following what said in Paragraph Nested Belief Representation,
u′ |= CFa(CPa(CFaf ∨CFa¬f)).

(5)–(6) The proofs for the fifth and sixth items are similar to the ones
presented in Item (2) and Item (3) of Proposition 2.3 respectively and is
therefore omitted.

aThe two sets are completely disjoint as one only contains possibilities that entail f
while the other only possibilities that do not. This means that that does not exist any
fully-observant-edge between possibilities that belongs in two different sets.

Proof of Proposition 2.5 The proof of this proposition is very similar
to the proof of Proposition 2.4 and it is, therefore, omitted for the sake of the
presentation.

A. Propositions Proofs 179

A.3 Proofs of Propositions 3.1 and 3.2

Let us provide the formal proof that the properties presented in Propositions 3.1

and 3.2. Most of the properties are shared between un-trustworthy announcement

and mis-trustworthy announcement; and their proof of correctness is the same

independently of the announcement type we are considering. For the sake of

readability, we will only report the proofs of Items (1) to (7) considering the un-

trustworthy announcement, while we explore the remaining properties considering

the specific action type.

In the following proofs, without loss of generality, we will consider that u |= ϕ.

The case when u |= ¬ϕ is a straightforward adaptation and it is, therefore, omitted.

Moreover, let us consider the case when the executability conditions of the action

a are met. In the case when these conditions are not satisfied, the action update

is not executed and therefore does not need to be proved.

A.3.1 Updated States Size Finiteness

Before providing the formal proof let us slightly modify the proof of Lemma A.2

so that it considers also the new actions. In particular, in what follows we prove

the e-state finiteness considering also the un-trustworthy announcement and the

mis-trustworthy announcement.

Proof of Lemma A.2 (updated) Following the definition of the transition
function of mAρ (Definition 2.12) enriched with the actions un-trustworthy
announcement and mis-trustworthy announcement, we can determine an upper
bound to the number of new possibilities generated after the application of an
action instance and, furthermore, of an action instances sequence. In particular,
from a given possibility p such that |Bp

AG| = n (where AG is the set of all the
agents) the cardinality of the set Bp′

AG will be, at most, equal to 3n. That is
because:

• when an ontic action is executed each possibility ∈ |Bp
AG| can be either

updated—if reached by a fully observant agent—or kept unchanged—if
reached by an oblivious agent. This means that an upper bound to the
size of Bp′

AG in case of an ontic action execution is 2n where only the
updated possibilities (n) are new elements of S.

180 A.3. Proofs of Propositions 3.1 and 3.2

• The case with sensing and un-trustworthy announcement actions is similar
to the ontic action one.

• Finally, mis-trustworthy announcement generates up to 2n new possi-
bilities. Each possibility ∈ |Bp

AG| can be updated with the announced
value—if reached by a trusty fully observant agent—or updated with
the negation of the announced fluent—if reached by an untrusty fully
observant agent. Both of the copies can then be added to the unchanged
possibilities—reached by an oblivious agent—meaning that the size of
Bp′

AG in case of an mis-trustworthy announcement action execution is 3n
where only the updated possibilities (2n) are new elements of S.

This identifies 3n as the upper bound for the growth of a state size and for
the generation of new possibilities after an action execution. Therefore, given
the size n of the initial state and the length of the action sequence l we can
conclude that |S| ≤ (n× 3l) that is indeed finite.

A.3.2 Proofs

Preserving all the other concepts introduced in Appendix A.1, we are ready to

prove Proposition 3.1.

Proof of Proposition 3.1 Let us prove each item separately:

(1) In the following we prove the first property of Proposition 3.1.

• First of all we identify the set of all the possibilities reached by the
trusty fully observant agents in u as Bu

Fa
and we recall that, as shown in

Appendix A.1, this set corresponds to the possibilities reached by CFa .

• We then calculate Bu′
Fa

that, following Definition 3.2, contains only
possibilities p′ such that e(a, p′) = 0 (False).

• This means that ∀p′ ∈ Bu′
Fa

we have that p′ |= ϕ.

• Given that this set contains only possibilities that entail ϕ we can derive
that Bu′

Fa
|= ϕ.

• Finally, as the set CFa ≡ Bu′
Fa

, we have that CFa |= ϕ.

(2) The set of the possibilities reachable by untrusty fully observant agents is
Bu

Ua
.

A. Propositions Proofs 181

• In order to compute Bu′
Ua

, following Definition 3.2, we apply Ψ(a, u) to
every element of Bu

Ua
.

• This means that the set of beliefs of the trusty fully observant, from the
point of view of the untrusty ones, is represented by the set Bu′

Ua,Fa
=

{p′ | p ∈ Bu′
Ua
∧ e(a, p′) = 0}.

• We then have that ∀p′ ∈ Bu′
Ua,Fa

p′ |= ϕ and therefore that u′ |=
CUa(CFaϕ).

(3) Let us identify the set of the possibilities reachable by partial observant
agents with Bu

Pa
. We also recall that this set is equal to CPa in u.

• Now to calculate Bu′
Pa

, following Definition 3.2, we apply
Υ(a,w) ∪Ψ(a, u) to every element of Bu

Pa
.

• It is easy to identify two disjoint subsets BΥ
Pa

and BΨ
Pa

of Bu′
Pa

that
contain only possibilities such that:

– BΨ
Pa
|= u(a, u);

– BΥ
Pa
̸|= u(a, u);

– (BΨ
Pa
∪ BΥ

Pa
) ≡ Bu′

Pa
; and

– (BΨ
Pa
∩ BΥ

Pa
) ≡ ∅.

• From these two sets we can now construct the sets BΨ
Pa,Fa

and BΥ
Pa,Fa

that are simply the set of possibilities reachable from the fully observant
agents starting from BΨ

Pa
and BΥ

Pa
, respectively.

• Given that the set BΨ
Pa,Fa

resulted from the application of the transition
function from the point of view of trusty fully observant agents, we
know from Item (1) that for ∀p ∈ BΨ

Pa,Fa
, p |= ϕ.

• This implies that BΨ
Pa,Fa

reaches only possibilities where the interpre-
tation of ϕ is true and similarly in BΥ

Pa,Fa
only possibilities where the

interpretation of ϕ is false.

• This means that BΨ
Pa,Fa

|= ϕ and BΥ
Pa,Fa

|= ¬ϕ.

• We can then derive that BΨ
Pa
|= CFaϕ being BΨ

Pa,Fa
= {p | p ∈⋃︁

q∈BΨ
Pa

q(Fa)} (and similarly BΥ
Pa
|= CFa¬ϕ).

• Finally, being Bu′
Pa

= BΨ
Pa
∪ BΥ

Pa
we can conclude that Bu′

Pa
|= CFaϕ ∨

CFa¬ϕa and therefore u′ |= CPa(CFaϕ ∨CFa¬ϕ).

182 A.3. Proofs of Propositions 3.1 and 3.2

(4) To prove this item we will make use of the properties proved in previous
Items.

• As said in Appendix A.1, we know that Bu
Fa∪Ua,Pa

corresponds with
the set of possibilities identified by CFa∪UaCPa and it is also equal to
{p | (∃q ∈ Bu

Pa
)(p ∈ ⋃︁

i∈Fa∪Ua

q(i))}.

• Now to calculate Bu′
Fa∪Ua

we apply Definition 3.2 to every element of
Bu

Fa∪Ua
. This means that Bu′

Fa∪Ua
= {p′ | (∃p ∈ Bu

Fa∪Ua
)(p′ = Ψ(a, p))}.

• We then want to calculate the set {p′ | (∃q′ ∈ Bu′
Fa∪Ua

)(p′ ∈ ⋃︁
i∈Pa

q′(i))}.

• To calculate the “point of view” of the partially observants with respect
to the fully observants we apply Definition 3.2 to all the elements of
{p | (∃q′ ∈ Bu′

Fa∪Ua
)(p ∈ Bq

Pa
)}.

• We can then derive that the resulting set is {p′ | (∃q′ ∈ Bu′
Fa∪Ua

)(p′ ∈⋃︁
i∈Pa

q′(i))} ≡ Bu′
Fa∪Ua,Pa

.

• We showed in the previous item that given the set of possibilities resulted
by applying the transition function entails CFa∪Uaϕ ∨CFa∪Ua¬ϕ.

• This means that Bu′
Fa∪Ua,Pa

|= (CFa∪Uaϕ ∨ CFa∪Ua¬ϕ) and therefore,
following what said in Appendix A.1, u′ |= CFa∪Ua(CPa(CFa∪Uaϕ ∨
CFa∪Ua¬ϕ)).

(5) Let us consider y ∈ Oa.

• If u |= By(φ) we have that every p ∈ Bu
y entails φ.

• Given that, from Definition 3.2, when y ∈ Oa for each possibility
p ∈ Bu

y p(y) = p′(y) it is easy to see that Bu
y ≡ Bu′

y .

• Given that the two sets of possibilities are the same it means that the
reachability functions that they represent are the same.

• Being the two functions the same it means that ∀φ ∈ D u |=
By(φ) iff u′ |= By(φ).

(6) Let us consider x ∈ Fa ∪Ua ∪Pa and y ∈ Oa.

A. Propositions Proofs 183

• Being y ∈ Oa, from Definition 3.2, we know that p(y) = p′(y) such that
p ∈ Bu

x and p′ is its updated version ∈ Bu′
x .

• This means that for every element in Bu
x we have an updated version

that has the same reachability function for the agent y.

• Then we can derive that Bu
x,y ≡ Bu′

x,y and therefore that these two sets
contain the same possibilities.

• As already said in Item (5) when two sets of possibilities are the same
they entail the same formulae.

• We can conclude that if u |= Bx(By(φ)) then u′ |= Bx(By(φ)).

(7) Let us consider y ∈ Ua. Let us assume, without losing generality, that u
|= By(ϕ). The cases where u |= By(¬ϕ) or u |= (¬By(ϕ) ∧ ¬By(¬ϕ)) are
similar and therefore omitted.

• Being y ∈ Ua we know that the updated version of her/his reachable
possibility is Bu′

y = {p′ | p ∈ Bu
y ∧ p′ = Ψ(a, p)}.

• Following Definition 3.2 we know that each possibility in Bu′
y has the

same fluent set of its previous version.

• Moreover, an untrusty agent preserves all the edges. This means that
if an agent reached q from q in u she/he will reach q′ from q′ in u′.

• From the last statement, and given that the updated version of each
possibility maintains the same fluent set we can conclude that, if
u |= By(ϕ) iff u |= By(ϕ) (similarly if u |= By(¬ϕ) and if (¬By(ϕ) ∧
¬By(¬ϕ))).

aThe two sets are completely disjoint as one only contains possibilities that entail ϕ
while the other only possibilities that do not. This means that that does not exist any
fully-observant-edge between possibilities that belongs in two different sets.

Finally, we can prove the properties introduced in Proposition 3.2.

Proof of Proposition 3.2 Let us prove each property separately.

(8) In the following we prove the first property of Proposition 3.2.

• First of all we identify the set of all the possibilities reached by the

184 A.3. Proofs of Propositions 3.1 and 3.2

untrusty fully observant agents in u as Bu
Ua

and we recall that, as shown
in Appendix A.1, this set corresponds to the possibilities reached by
CUa .

• We then calculate Bu′
Ua

that, following Definition 3.3, contains only
possibilities p′ such that e(a, p′) = 1 (True).

• This means that ∀p′ ∈ Bu′
Fa

we have that p′ |= ¬ϕ.

• Given that this set contains only possibilities that entail ϕ we can derive
that Bu′

Ua
|= ¬ϕ.

• Finally, as the set CUa ≡ Bu′
Ua

, we have that CUa |= ¬ϕ.

(9) The set of the possibilities reachable by trusty fully observant agents is
Bu

Fa
.

• Now to calculate Bu′
Fa

, following Definition 3.3, we apply Ψ(a, u) to every
element of Bu

Fa
.

• This means that the set of beliefs of the untrusty fully observant,
from the point of view of the trusty ones, is represented by the set
Bu′

Fa,Ua
= {p′ | p ∈ Bu′

Fa
∧ e(a, p′) = 1}.

• It is then straightforward to see that the ∀p′ ∈ Bu′
Fa,Ua

p′ |= ¬ϕ and
therefore that u′ |= CFa(CUa¬ϕ).

(10) We identify the set of the possibilities reachable by partial observant agents
with Bu

Pa
. We also recall that this set is equal to CPa in u.

• Now to calculate Bu′
Pa

, following Definition 3.3, we apply
Υ(a,w) ∪Ψ(a, u) to every element of Bu

Pa
.

• It is easy to identify two disjoint subsets BΥ
Pa

and BΨ
Pa

of Bu′
Pa

that
contains only possibility such that:

– BΨ
Pa
|= u(a, u);

– BΥ
Pa
̸|= u(a, u);

– (BΨ
Pa
∪ BΥ

Pa
) ≡ Bu′

Pa
; and

– (BΨ
Pa
∩ BΥ

Pa
) ≡ ∅.

• From these two sets we can now construct the sets BΨ
Pa,Ua

and BΥ
Pa,Ua

A. Propositions Proofs 185

that are simply the set of possibilities reachable from the fully observant
agents starting from BΨ

Pa
and BΥ

Pa
respectively.

• Given that the set BΨ
Pa,Ua

resulted from the application of the transition
function from the point of view of untrusty fully observant agents, we
know from Item (8) that for ∀p ∈ BΨ

Pa,Ua
, p |= ¬ϕ.

• This implies that BΨ
Pa,Ua

reaches only possibilities where the interpre-
tation of ϕ is false and similarly in BΥ

Pa,Ua
only possibilities where the

interpretation of ϕ is true.

• This means that BΨ
Pa,Ua

|= ¬ϕ and BΥ
Pa,Ua

|= ϕ.

• We can then derive that BΨ
Pa
|= CUa¬ϕ being BΨ

Pa,Ua
= {p | p ∈⋃︁

q∈BΨ
Pa

q(Ua)} (and similarly BΥ
Pa
|= CUaϕ).

• Finally, being Bu′
Pa

= BΨ
Pa
∪ BΥ

Pa
we can conclude that Bu′

Pa
|= CUaϕ ∨

CUa¬ϕ and therefore u′ |= CPa(CUaϕ ∨CUa¬ϕ).

186 A.4. Proof of Proposition 4.1

A.4 Proof of Proposition 4.1

Following we will present the formal proof that the properties presented in Proposi-

tion 4.1.

Proof of Proposition 4.1 Let us prove each item separately. Let us
assume that a is j announces f. The case when j announces ¬f is similar,
and we will only highlight the differences when it is needed.

(1) In the following we prove Item (1).

• First of all we identify the set of all the possibilities reached by the
fully observant agents in u as Bu

Fa
.

• We then re-apply the reachability function following the beliefs of the
trustful agents. This means that the set of beliefs of the trustful,
from the point of view of the fully observant ones, is represented by the
set Bu

Fa,Ta
= {p | p ∈ Bq

Ta
∧ q ∈ Bu

Fa
}.

• Now to calculate Bu′
Fa,Ta

, following Definition 4.4, we apply χ(f, p, 1)
to every element p of Bu

Fa,Ta
. Let us note that if e(a) = 0, that is if j

announces ¬f, we should apply χ(f, p, 0) instead.

• This means that the set of updated beliefs of trustful agents, from
the point of view of the fully observant ones, is represented by the
set Bu′

Fa,Ta
= {p′ | p′(F) = ((p(F) \ {¬f}) ∪ {f}) ∧ p ∈ Bu

Fa,Ta
}. It is

important to notice that the truth value of the fluent f in the set of
possibilities Bu′

Fa
is not important as the application of χ(f, p, 1) on all

these possibilities forces their updated version to set the truth value of
f = 1 (similarly, for the negated case, the fluent truth value is 0).

• It is then straightforward to see that the set Bu′
Fa,Ta

entails f, as all the
reached possibility have the truth value of f set to 1. Recalling that,
as shown in Appendix A.1, the set Bu

α,β corresponds to the possibilities
reached by Cα(Cβ) where α, β ⊆ D(AG) it is clear that the updated
e-state u′ |= CFa(CTa(f)) (and similarly, in the negated case, u′ |=
CFa(CTa(¬f))).

• Now, to show that u′ |= CFa(CTa(Bj(f))) we need to recall that the
trustful agents consider that the announcer j to be trustful as well.
This means that Bu′

Fa,Ta,{j} is equal to Bu′
Fa,Ta

as the trustful agents
believes that the announcer j used χ(f, p, 1) to update her/his beliefs
(being, from their perspective trustful agent). This means that all
the possibilities in Bu′

Fa,Ta,{j} have the truth value of f set to 1 (or 0 in

A. Propositions Proofs 187

the negated case).

• Following Appendix A.1 we know that Bu′

Fa,Ta,{j} is equal to the
possibilities reached by applying CFa(CTa(Bj)). Given that all these
possibilities have the truth value of f set to 1 it is straightforward to
see that u′ |= CFa(CTa(Bj(f))).

• From the previous items now know that u′ |= CFa(CTa(f)) ∧
CFa(CTa(Bj(f))) and therefore that u′ |= CFa(CTa(f∧Bj(f))) as stated
in Item (1) (while for the negated case we can easily derive that u′ |=
CFa(CTa(¬f ∧Bj(¬f)))).

(2) Let us proceed with Item (2).

• First we identify the set of all the possibilities reached by the fully
observant agents in u as Bu

Fa
.

• We then re-apply the reachability function following the beliefs of
the mistrustful agents. This means that the set of beliefs of the
mistrustful, from the point of view of the fully observant ones, is
represented by the set Bu

Fa,Ma
= {p | p ∈ Bq

Ma
∧ q ∈ Bu

Fa
}.

• Now to calculate Bu′
Fa,Ma

, following Definition 4.4, we apply χ(f, p, 0)
to every element p of Bu

Fa,Ma
. Let us note that if e(a) = 0, that is if j

announces ¬f, we should apply χ(f, p, 1) instead.

• This means that the set of updated beliefs of mistrustful agents, from
the point of view of the fully observant ones, is represented by the
set Bu′

Fa,Ma
= {p′ | p′(F) = ((p(F) \ {f}) ∪ {¬f}) ∧ p ∈ Bu

Fa,Ma
}. It is

important to notice that the truth value of the fluent f in the set of
possibilities Bu′

Fa
is not important as the application of χ(f, p, 0) on all

these possibilities forces their updated version to set the truth value of
f = 0 (similarly, for the negated case, the fluent truth value is 1).

• It is then straightforward to see that the set Bu′
Fa,Ma

entails ¬f, as all
the reached possibility have the truth value of f set to 0. Recalling that,
as shown in Appendix A.1, the set Bu

α,β corresponds to the possibilities
reached by Cα(Cβ) where α, β ⊆ D(AG) it is clear that the updated
e-state u′ |= CFa(CMa(¬f)) (and similarly, in the negated case, u′ |=
CFa(CMa(f))).

• Now, to prove that u′ |= CFa(CMa(Bj(¬f))) we need to recall
that the mistrustful agents consider that the announcer j to be

188 A.4. Proof of Proposition 4.1

mistrustful as well. This means that Bu′

Fa,Ma,{j} is equal to Bu′
Fa,Ma

as
the mistrustful agents believes that the announcer j used χ(f, p, 0)
to update her/his beliefs (being, from their perspective mistrustful
agent). This means that all the possibilities in Bu′

Fa,Ma,{j} have the truth
value of f set to 0 (or 1 in the negated case).

• Following Appendix A.1 we know that Bu′

Fa,Ma,{j} is equal to the
possibilities reached by applying CFa(CMa(Bj)). Given that all these
possibilities have the truth value of f set to 0 it is straightforward to
see that u′ |= CFa(CMa(Bj(¬f))).

• From the previous items now know that u′ |= CFa(CMa(¬f)) ∧
CFa(CMa(Bj(¬f))) and therefore that u′ |= CFa(CMa(¬f ∧Bj(¬f))) as
stated in Item (1) (while for the negated case we can easily derive that
u′ |= CFa(CMa(f ∧Bj(f)))).

(3) To prove Item (3) let us consider i ∈ (Sa ∪ {j}) and that u does entail φ
(where φ ∈ {Bi(ℓ), Bi(¬ℓ), (¬Bi(ℓ) ∧ ¬Bi(¬ℓ))}). The case where u ̸|= φ
is similar and, therefore, omitted.

• Let us start by recalling that the executor agent j consider her/him-self
as stubborn, given that announcing something should not affect her/his
beliefs on what she/he has announced. This means that, to calculate
the updated version of u′, agent j applies the sub-function S as the
stubborn agents do.

• Now, being i ∈ (Sa ∪ {j}), we know from Definition 4.4 that the
updated version of her/his reachable possibilities is represented by the
set Bu′

i = {p′ | p ∈ Bu
i ∧ p′ = S(a, u, ℓ, s), } (The Boolean value s is

either 1, if i ∈ Sa, or 0, when i = j).

• Following Definition 4.4 we know that each possibility in Bu′
i has the

same fluent set of its previous version.

• Moreover, we know that an stubborn agent preserves all the edges.
In fact the unfolding of the execution of S from u, when considered
from an stubborn agent i’s point of view, simply re-applies S to all the
possibilities in Bu

i . This means that if an agent reached a possibility q
from another possibility p in u she/he will reach q′ from p′ in u′.

• From the last statement, and given that the updated version of each
possibility maintains the same fluent set we can conclude that, if
u |= φ then u′ |= φ (similarly if u ̸|= φ then u′ ̸|= φ) with φ ∈

A. Propositions Proofs 189

{Bi(ℓ), Bi(¬ℓ), (¬Bi(ℓ) ∧ ¬Bi(¬ℓ))} and i ∈ (Sa ∪ {j}).

(4) We identify the set of the possibilities reachable by partial observants
agents with Bu

Pa
. We also recall that this set is equal to CPa in u.

• Now to calculate Bu′
Pa

, following Definition 4.4, we apply P(a, p) to every
element p of Bu

Pa
. This results in all the possibilities p′ of Bu′

Pa
to have

the same fluent set of the corresponding possibility p ∈ Bu
Pa

.

• It is easy to identify two disjoint subsets Bu′
0

Pa
and Bu′

1
Pa

of Bu′
Pa

that
contains only possibility such that:

◦ Bu′
0

Pa
̸|= ℓ;

◦ Bu′
1

Pa
|= ℓ;

◦ (Bu′
0

Pa
∪ Bu′

1
Pa

) = Bu′
Pa

; and
◦ (Bu′

0
Pa
∩ Bu′

1
Pa

) = ∅.

• From these two sets, following Definition 4.4 we can now construct the
sets Bu′

0
Pa,i and Bu′

1
Pa,i, with i ∈ (Fa ∪ {j)}, by applying the sub-functions

χ(f, p, 0) ∀p ∈ Bu′
0

Pa
and χ(f, p, 1) ∀p ∈ Bu′

1
Pa

respectively. These two sets
are simply the set of possibilities reachable from the fully observant
agents (and the executor, considered fully observant by the partially
observants) starting from Bu′

0
Pa

and Bu′
1

Pa
respectively.

• Let us note that trustful, stubborn and the executor are considered
equally by the partially observant given that they do not identify a
truth value but simply believe that the fully observant agents will know
the truth value of the announced fluent.

• Given that the set Bu′
0

Pa,i resulted from the application of the transition
function from the point of view of fully observant agents, we know from
Items 1 and 2 that for ∀p ∈ Bu′

0
Pa,i, p ̸|= ℓ.

• This implies that Bu′
0

Pa,i reaches only possibilities where the interpretation
of ℓ is false and, similarly, in Bu′

1
Pa,i reaches only possibilities where the

interpretation of ℓ is true.

• This means that Bu′
0

Pa,i |= ¬ℓ and Bu′
1

Pa,i |= ℓ.

• It is easy to see, then, that Bu′
0

Pa
|= Bi(¬ℓ) being Bu′

0
Pa,i = {p | p ∈

190 A.4. Proof of Proposition 4.1

⋃︁
q∈B

u′
0

Pa

q(i)} (and similarly Bu′
1

Pa
|= Bi(ℓ)).

• Finally, being Bu′
Pa

= Bu′
0

Pa
∪ Bu′

1
Pa

we can conclude that Bu′
Pa
|= Bi(¬ℓ) ∨

Bi(ℓ)a and therefore u′ |= CPa(Bi(¬ℓ) ∨Bi(ℓ)).

(5) Let us now illustrate the proof of Item (5).

• First, to avoid unnecessary clutter let us use i) Va to indicate the set
of the observant agents, i.e., Va = (Fa ∪Pa ∪ {j}) and; ii) i to indicate
a doubtful agent, i.e., i ∈ Da.

• We then identify the set of all the possibilities reached by the observant
agents in u as Bu

Va
.

• Next, we re-apply the reachability function following the beliefs of the
doubtful agents. This means that the set of beliefs of a doubtful
agent i, from the point of view of the observant ones, is represented by
the set Bu

Va,i = {p | p ∈ Bq
i ∧ q ∈ Bu

i }.

• Now to calculate Bu′
Va,i, following Definition 4.4, we apply both χ(f, p, 0)

and χ(f, p, 1) to every element p of Bu
Va,i.

• This means that the set of updated beliefs of a doubtful agent, from
the point of view of the observant ones, is represented by the union
of the sets Bu′

0
Va,i = {p′ | p′(F) = ((p(F) \ {f}) ∪ {¬f}) ∧ p ∈ Bu

Va,i}
and Bu′

1
Va,i = {p′ | p′(F) = ((p(F) \ {¬f}) ∪ {f}) ∧ p ∈ Bu

Va,i}. It is
important to notice that the truth value of the fluent f in the set of
possibilities Bu′

Va
is not important as the application of χ(f, p, 0/1) on

all these possibilities forces their updated version to set the truth value
of f = 0/1.

• As all the reached possibility from Bu′
0

Va,i and Bu′
0

Va,i have the truth value
of f set to 0 and 1 respectively we can easily derive that the former
entails ¬f, while the latter entails f.

• Moreover, being Bu′
Va,i = (Bu′

0
Va,i ∪ B

u′
1

Va,i), we know that Bu′
Va,i ̸|= f and

Bu′
Va,i ̸|= ¬f. This is true because the subset Bu′

0
Va,i ̸|= f while Bu′

1
Va,i ̸|= ¬f.

• Recalling that, as shown in Appendix A.1, the set Bu
α,i corresponds to

the possibilities reached by Cα(Bi), where α ⊆ D(AG) and i ∈ D(AG),

A. Propositions Proofs 191

it is clear that the set Bu′
Va,i corresponds to the possibilities reached by

CVa(Bi) starting from u′.

• Since the set identified in the last item can derive both f and ¬f,
following the entailment rules of Definition 2.11, we can infer that both
CVa(¬Bi(¬f)) and CVa(¬Bi(f)) hold.

(6) Finally, let us prove Item (6).

• When an agent o ∈ Oa, from Definition 4.4, we know that p′(o) = p(o).
This means that, independently from the how a possibility p′ has been
updated, the point of view any oblivious agent o from p′ is equal to the
one that the point of view of o from p.

• This implies that, ∀p′ ∈ Bu′
i with i ∈ D(AG), p′(o) = p(o) where o ∈ Oa.

• This means that for every element in Bu
i we have an updated version in

Bu′
i that has the same reachability function for each oblivious agent o.

• Then, it is easy to see, that Bu
i,o = Bu′

i,o and, therefore, that these two
sets contain the same possibilities.

• Given that the two sets of possibilities are the same, it means that
the reachability functions that they represent are the same. Being
the two functions the same it means that given a belief formula φ,
u |= Bi(Bo(φ)) iff u′ |= Bi(Bo(φ)).

• Finally, we can conclude that if u |= Bi(Bo(φ)) then u′ |= Bi(Bo(φ)).

aThe two sets are completely disjoint as one only contains possibilities that entail ℓ while
the other only possibilities that do not. This means that does not exist any fully-observant-
edge between possibilities that belongs in two different sets.

192 A.5. Proofs of Propositions 5.1 to 5.3

A.5 Proofs of Propositions 5.1 to 5.3

A.5.1 Abbreviations

To avoid unnecessary clutter instead of using the predicate pos_w(T, R, P) to

identify a generic possibility we will write pos(u) where the lowercase letter

in typewriter font (generally u, v or p) identifies a generic triple (T, R, P).

Whenever possible we will present a more “concrete” version of the ASP rules by

removing parts of the rule that are not necessary to capture its semantics. For

example, the rule for entailing a fluent literal f, that in ASP has the generic form:

entails(T, R, P, F) :- time(T), holds(T, R, P, F), pos_w(T, R, P), fluent(F).

will be rewritten as:

entails(u, f) :- holds(u, f), fluent(f).

Moreover, let us make use of the notations Γ and Φ to identify PLATO’s and mAρ’s

transition function respectively. In the following proofs, we will use p′ instead of

Γ(a, p) or Φ(a, p) when this does not cause ambiguity and make use of the compact

notation u(F) = {f | f ∈ D(F) ∧ u |= f} ∪ {¬f | f ∈ D(F) ∧ u ̸|= f}.

A.5.2 PLATO Entailment Correctness

As a first step we need to prove that the entailment in PLATO is correct with

respect to the one introduced in Definition 2.11. To do that we will identify the

rules in PLATO that correspond with an entailment rule in mAρ (from Section 5.3.1)

and prove their correctness. For the sake of readability let us quickly re-introduce

the entailment rules for possibilities used by mAρ. Let a domain D, the belief

formulae φ, φ1, φ2 ∈ D(BF), a fluent literal f ∈ D(F), an agent i ∈ D(AG), a

group of agents α ⊆ D(AG), and a possibility u ∈ D(S) be given. The entailment

in mAρ is defined as follows:

A. u |= f if u(f) = 1;

B. u |= Bi(φ) if for each v ∈ u(i), v |= φ;

A. Propositions Proofs 193

C. u |= ¬φ if u ̸|= φ;

D. u |= φ1 ∨ φ2 if u |= φ1 or u |= φ2;

E. u |= φ1 ∧ φ2 if u |= φ1 and u |= φ2;

F. u |= Eαφ if u |= Bi(φ) for all i ∈ α;

G. u |= Cαφ if u |= Ek
αφ for every k ≥ 0, where E0

αφ = φ and Ek+1
α φ = Eα(Ek

αφ).

Proof of Proposition 5.1 To prove that the ASP encoding of the
entailment is correct we will identify each entailment rule with a rule of
PLATO.

• Rule A corresponds to:

1. entails(u, f) :- holds(u, f), fluent(f).
2. entails(u,¬f) :- holds(u,¬f), fluent(f).

Let us note that the predicate holds correctness is derived from Propo-
sitions 5.2 and 5.3 (shown later). In fact, being the construction of the
initial state and the update function correct, it is straightforward to see that
∀f ∈ D(F) and ∀u ∈ D(S) the predicate holds(u, f) is true iff u(f) = 1
while holds(u, ¬f) is true iff u(f) = 0.

• Rule B corresponds to:

3. not_entails(u, b(i, φ)) :- not entails(v, φ), believes(u, v, i).
4. entails(u, b(i, φ)) :- not not_entails(u, b(i, φ)).

Similarly to the previous point, following Propositions 5.2 and 5.3, we
can derive the correctness of the predicate believes and consequently
the correctness of reaches. Moreover, for this case, we used an auxiliary
predicate not_entails (ASP Rule 3) that checks whether a given formula
φ is not entailed by a possibility v. Namely we calculate the set U s.t.
∄u ∈ U , u ̸|= φ. This can be rewritten as ∀u ∈ U , u |= φ. Hence, for formulae
of the type b(i, φ) we require that all of the possibilities believed by i do
entail φ as in Rule B.

• Rules C , D, and E correspond to ASP Rules 5 , 6 -7 , and 8 , respectively.

5. entails(u, neg(φ)) :- not entails(u, φ).
6. entails(u, or(φ1, φ2)) :- entails(u, φ1).
7. entails(u, or(φ1, φ2)) :- entails(u, φ2).
8. entails(u, and(φ1, φ2)) :- entails(u, φ1), entails(u, φ2).

194 A.5. Proofs of Propositions 5.1 to 5.3

These mAρ and ASP Rules represent the inductive steps of the entailment
in mAρ and PLATO respectively, and it is straightforward to check their
correspondence. The base cases are Rule A for mAρ and ASP Rules 1 , 2
for PLATO.

• Rule F is used to ease the writing of Rule G without adding any semantic
to the entailment and was not necessary to transpose. The formula Eαφ is,
in fact, just a rewriting of ⋀︁

i∈α
Bi(φ).

• Rule G corresponds to ASP Rule 10 .

9. not_entails(u, c(α, φ)) :- not entails(v, φ), reaches(u, v, i).
10. entails(u, c(α, φ)) :- not not_entails(u, c(α, φ)).

Similarly to ASP Rule 4 for formulae of the type c(α, φ) we require that
all of the possibilities reached by α do entail φ. This is achieved through
an auxiliary predicate not_entails (ASP Rule 9) that checks whether a
given formula φ is not entailed by a possibility v that is reached by α.

A.5.3 PLATO Initial State Construction Correctness

As already mentioned, the initial state description in mAρ must model a finitary

S5-theory to ensure a finite number (up to bisimulation) of e-states. that can satisfy

the initial conditions [Son et al., 2014]. For the sake of readability, let formally

introduce the concept of Finitary S5.

Definition 1.1: Finitary S5-theory [Son et al., 2014]

Let a domain D, a fluent formula ϕ ∈ D, and an agent i ∈ D(AG) be given. A
finitary S5-theory is a collection of formulae of the form:

(i) ϕ (ii) CAG(ϕ)

(iii) CAG(Bi(ϕ) ∨Bi(¬ϕ)) (iv) CAG(¬Bi(ϕ) ∧ ¬Bi(¬ϕ))
Moreover, we require each fluent literal f ∈ D(F) to appear in at least one of
the formulae (ii)–(iv).

Proof of Proposition 5.2 To prove that the initial state generated in
PLATO is equal to the one derived in mAρ we will show that PLATO has the
same behavior as mAρ for each type of initial condition (formulae (i)–(iv)).

(ii) For a clearer proof let us start from the second type of condition, i.e.,

A. Propositions Proofs 195

CAG(ϕ). These formulae are used to determine the set of possible worlds
that are contained in the initial e-state. A fluent literal f is initially known
if there exists a formula CAG(f) or CAG(¬f). In the former case, all the
initial possible world must derive that f is true, whereas in the latter that
f is false. If there are no such formulae for f, then it is said to be initially
unknown.
Following Definition A.1 mAρ initial e-state contains all the worlds s.t.:
(i) are consistent in their fluents’ truth value; (ii) entail the correct truth
value for each initially known fluent literal; and (iii) generate all the different
combinations of the initially unknown fluents. In the same manner, PLATO
determines the set of possible worlds (i.e., pos_w) through the following
rules:

11. unknown_init(ℓ) :- not init(CAG(ℓ)), fluent(ℓ).
12. initial_dim(2**K) :- K = {fluent(ℓ): unknown_init(ℓ)}.
13. pos_w(1..K) :- initial_dim(K).
14. holds(u, ℓ) :- init(CAG(ℓ)), pos_w(u), fluent(ℓ).
15. K/2 { holds(u, f) : pos_w(u)} K/2 :- unknown_init(f),

initial_dim(K).
16. K/2 {not holds(u, f) : pos_w(u)} K/2 :- unknown_init(f),

initial_dim(K).

Where ℓ can be either f or ¬f and the facts init(CAG(ℓ)) are given.

(i) Formulae of type (i) are used to identify which possibility among the initial
ones (determined by the previous step) identifies the pointed world. In
particular, this type of condition is used to express the truth values of
the fluents in the initial pointed world. That is, every formula expressed
through conditions of this type must be true in the initial pointed world.
In PLATO this type of condition is expressed as follows:

17. pointed(u) :- init(ℓ), pos_w(u), holds(u, ℓ), fluent(ℓ).

Where ℓ can be either f or ¬f and the facts init(ℓ) are given.

(iii) Formulae of the form CAG(Bi(ϕ) ∨Bi(¬ϕ)) are used to filter out the edges
of the initial state. In particular, during the initial state construction in
mAρ formulae of this type remove the edges, labeled with i, that link two
possible worlds that “disagree” on the truth value of ϕ. This is also done
in PLATO using the following rules:

18. not_b_init(u, v, i) :- pos_w({u, v}), init(C(or(b(i, ϕ), b(i, ¬ϕ)))).
19. not_b_init(u, v, i) :- pos_w({u, v}), init(C(or(b(i, ϕ), b(i, ¬ϕ)))).
20. believes(u, v, i) :- pos_w({u, v}), not not_b_init(u, v, i).

196 A.5. Proofs of Propositions 5.1 to 5.3

(iv) Formulae of the type (iv) do not filter out any other edges. Since the
construction of the initial state is achieved by removing the edges of a
complete graph—i.e., being G the set of initial possibilities, ∀u ∈ G,∀i ∈ AG
we have that u(i) = G. We can observe that this type of formulae does not
contribute to this filtering, hence we do not consider them in the initial
state generation in PLATO.

Let us note that, being formulae (i)–(iv) the only ones allowed, PLATO
constructs the initial state only using ASP Rules 11–20 .

A.5.4 PLATO Transition Function Correctness

To prove the correctness of the ASP-based e-state update we will prove the

correspondence between PLATO and mAρ for ontic and epistemic (i.e., sensing and

announcement) actions, separately. Before proving each action type we will briefly

re-illustrate its transition function as defined in Definition 2.12. Once again, let

a domain D, its set of action instances D(AI), the set D(S) of all the e-states

reachable from D(φini) with a finite sequence of action instances, an action instance

a ∈ D(AI), a possibility u ∈ D(S), and an agent i ∈ D(AG) be given.

The transition function Φ : D(AI) × D(S) → D(S) ∪ {∅} for an executable

ontic action1 is Φ(a, u) = u′, where:

e(a, u) = {ℓ | (a causes ℓ) ∈ D}; and

e(a, u) = {¬ℓ | ℓ ∈ e(a, u)} where ¬¬ℓ is replaced by ℓ.

u′(f) =
⎧⎨⎩1 if f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

0 if ¬f ∈ (u(F) \ e(a, u)) ∪ e(a, u)
H.

u′(i) =

⎧⎪⎨⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Fa
I.

Proof of Proposition 5.3 (for ontic actions) To prove that two
possibilities generated from two different transition functions, starting from
equal possibilities, entail the same formulae we need to prove that the updated
possibilities have the same structural properties. To show this we will identify
Rules H and I with ASP rules.

1If a is not executable in u, then Φ(a, u) = ∅.

A. Propositions Proofs 197

• Rule H corresponds to:

21. holds(u′, ℓ) :- causes(a, ℓ), pos_w(u), pos_w(u′), plan(T, a).
22. holds(u′, ℓ) :- not causes(a, ℓ), holds(u, ℓ), pos_w(u), pos_w(u′),

plan(T, a).

Let us start by showing that the updated possibilities u′ and v′, generated
from Φ(a, u) and Γ(a, v) respectively, are equal with respect to the fluents
truth value. Let us consider the case when the action a causes f; in this
scenario u′(f) is equal to 1 (Rule H) and holds(v′, f) is valid (ASP Rule 21)
meaning that both u′ and v′ consider f to be true.
Similarly, when the action a causes ¬f we will have that u′(f) is equal to 0
(Rule H) while the predicate holds(v′, ¬f) is true (ASP Rule 21) causing
f to be false in u′ and v′.
Finally, we need to show that the fluents that are not modified by the action
have the same truth value both in u′ and v′. This is easily derived in mAρ

as in Rule H the fluents modified are only the ones that belong to the set
e(a, u)—namely the effects of a—while the others are preserved from u(F).
On the other hand, in PLATO, this is accomplished with ASP Rule 22 that
explicitly sets every fluent literal that is not an effect of a as it was in v.
Given that we assumed u and v to entail the same formulae, and therefore to
have the same truth value for fluents, we can conclude that also the fluents
not directly modified by a have the same value in u′ and v′.

• After the fluents truth value we need to prove that the beliefs update is the
same in both mAρ and PLATO.

– Let us start with the beliefs related to the oblivious agents. The first case
of Rule I (Rule I 1) corresponds to:
23. believes(u′, v, i) :- believes(u, v, i), oblivious(i, a),

pos_w({u, u′, v}).
As described in Rule I 1 an oblivious agent i, from u′, believes the same
set of possibilities Ui that she believed in u. In PLATO the behavior
of an oblivious agent i is described by ASP Rule 23 that creates a
predicate believes from v′ to each possibility that belongs to the set Vi
of possibilities believed by i in v. Given that, by definition, u and v must
entail the same formulae we have that the sets of possibilities believed
by an agent starting from u and v must be equals. In particular, this
means that the sets Ui and Vi are the same set and, therefore, an oblivious
agent’s beliefs are the same starting from u′ or v′.

– Next, we will prove that the beliefs of fully observant agents are equals
in u′ and v′. The second case of Rule I (Rule I 2) corresponds to ASP
Rule 24 .

198 A.5. Proofs of Propositions 5.1 to 5.3

24. believes(u′, v′, i) :- believes(u, v, i), fully_obs(i, a),
pos_w({u, u′, v, v′}).

This scenario for mAρ is described in Rule I 2 where it is shown how a
fully observant agent i, starting from u′, believes the updated version
of the possibilities that she believed starting from u. The same holds
for PLATO where ASP Rule 24 creates a predicate believes from v′ to
every updated version of the possibility believed by i in v. This means
that a fully observant agent, that necessarily believes the same set Pi
of possibilities starting from u and v, believes the updated version of Pi
starting from u′ and v′. As shown in the other points the result of both
the transition functions on a possibility p is the same possibility p′ and
therefore the updated version of Pi is equal in both mAρ and PLATO.

In what follows we will provide the proof for the transition function of an

announcement action. While this update is different from the one used for sensing

actions, their behavior is very similar. The only difference is that sensing actions

only consider fluent literals as effects while announcements allow for entire fluent

formulae. Being each fluent literal a fluent formula itself, we have that the proof

for sensing actions falls under the one for announcements. That is why, for the

sake of readability, we will only show that the update is correct for announcements.

The transition function Φ : D(AI) × D(S) → D(S) ∪ {∅} for an executable

announcement action2 is Φ(a, u) = u′, where:

e(a, u) =
⎧⎨⎩0 if u |= ϕ

1 if u |= ¬ϕ

u′(F) = u(F)J.

u′(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(i) if i ∈ Oa⋃︁
w∈u(i)

Φ(a,w) if i ∈ Pa⋃︁
w∈u(i): e(a,w)=e(a,u)

Φ(a,w) if i ∈ Fa

K.

2If a is not executable in u, then Φ(a, u) = ∅.

A. Propositions Proofs 199

Proof of Proposition 5.3 (for announcement actions) As in the
previous proof, we will identify Rules J and K with ASP rules.

• Rule J corresponds to:

25. holds(u′, ℓ) :- plan(T, a), pos_w(u), pos_w(u′), holds(u, ℓ).

Let us start by showing that the updated possibilities u′ and v′, generated
from Φ(a, u) and Γ(a, v) respectively, are equal with respect to the fluents
truth value. This is easily derived: in fact in mAρ (Equation J) the fluents
interpretation in u′ is equal to the fluents interpretation of u and in PLATO
the predicates holds are valid on the same fluents interpretation in both v
and v′ (ASP Rule 25). Given that we assumed u and v to entail the same
formulae, and therefore to have the same truth value for fluents, we can
conclude that also the fluents have the same value in u′ and v′.

• After the fluents truth value we need to prove that the belief update is the
same in both mAρ and PLATO.

– Let us start with the beliefs related to the oblivious agents. The first case
of Rule K (Rule K 1) corresponds to ASP Rule 26 .
26. believes(u′, v, i) :- believes(u, v, i), oblivious(i, a),

pos_w({u, u′, v}).
As for the ontic actions an oblivious agent i, from u′, believes the same
set of possibilities Ui that she believed in u (Rule K 1) and in PLATO
i believes, from v′, the set Vi of possibilities believed by i in v (ASP
Rule 26). Given that, by definition, u and v must entail the same formulae
we have that the sets of possibilities believed by an agent starting from u
and v must be equals. In particular, this means that the sets Ui and Vi
are the same set and, therefore, an oblivious agent’s beliefs are the same
starting from u′ or v′.

– Next we need to show that the partially observant agents’ beliefs are
equals in u′ and v′. The second case of Rule K (Rule K 2) corresponds to:
27. believes(u′, v′, i) :- believes(u, v, i), partial_obs(i, a),

pos_w({u, u′, v, v′}).
This scenario for mAρ is described by Rule K 2 where it is shown how a
partially observant agent i, starting from u′, believes the updated version
of the possibilities that she believed starting from u. The same holds
for PLATO where ASP Rule 27 creates a predicate believes from v′ to
every updated version of the possibility belived by i in v. This means
that a partially observant agent, that necessarily believes the same set Pi
of possibilities starting from u and v, believes the updated version of Pi
starting from u′ and v′. As shown in the other points the result of both

200 A.5. Proofs of Propositions 5.1 to 5.3

the transition functions on a possibility p is the same possibility p′ and
therefore the updated version of Pi is equal in both mAρ and PLATO.

– Finally, we need to prove that also the beliefs of the fully observant agents
are equals in u′ and v′. The third case of Rule K (Rule K 3) corresponds
to:
28. pos_w(u′) :- plan(T, a), pos_w(u), reach_fully(pointedu, u),

entails(u, ϕ), entails(pointedu, ϕ).
29. pos_w(u′) :- plan(T, a), pos_w(u), believes(pointedu, u, i),

partial_obs(i, a).
30. pos_w(u′) :- plan(T, a), pos_w({u,v}), believes(pointedu, v, i),

partial_obs(i, a), reach_not_oblivious(v, u).
31. believes(u′, v′, i) :- believes(u, v, i), fully_obs(i, a),

holds({u, v}, ℓ),pos_w({u, u′, v, v′}).
Given that Φ(a, u) is assumed to be applied starting from the pointed
world we have that a fully observant agent, starting from the pointed
possibility, only believes possibilities where ϕ has the same truth value
that has in the pointed one. This case is matched exactly in PLATO by
the combination of ASP Rules 28 and 31 . On the other hand, if a world
is reached by a fully observant agent not directly from the pointed world—
i.e., it is reached by a fully observant through a path of partially and fully
observant agents that starts with a partially observant one—its updated
version will only have fully observant edges to the updated possibilities
with the same interpretation of ϕ. This is because Rule K 2 is firstly
applied and finally (possibly after other applications of Rule K) Rule K 3
is used. In fact, by applying Rule K 2 first, Φ is recursively applied on both
possibilities that have and do not have the same interpretation of ϕ with
respect to the pointed world. It is straightforward to see that this rule is
transposed in PLATO through the combination of ASP Rules 30 and 31 .

No one knows everything,
but true wisdom is to know whom to ask.

— Students’ proverb
in Moss, Dynamic Epistemic Logic

[Moss, 2015] Bibliography

Peter Aczel. Non-well-founded sets. CSLI Lecture Notes, 14, 1988.

Martin Allen and Shlomo Zilberstein. Complexity of decentralized control: Special
cases. In 23rd Annual Conference on Neural Information Processing Systems 2009,
7-10 December , Vancouver, British Columbia, Canada, pages 19–27. Curran
Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper/2009/
hash/fec8d47d412bcbeece3d9128ae855a7a-Abstract.html.

Ken Arnold, James Gosling, and David Holmes. The Java programming language.
Addison Wesley Professional, 2005.

Robert Aumann, Adam Brandenburger, et al. Epistemic conditions for Nash
equilibrium. ECONOMETRICA-EVANSTON ILL-, 63:1161–1161, 1995.

Roberta Ballarin. Modern Origins of Modal Logic. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Fall 2021 edition, 2021.

Musard Balliu, Mads Dam, and Gurvan Le Guernic. Epistemic temporal logic
for information flow security. In Proceedings of the ACM SIGPLAN 6th
Workshop on Programming Languages and Analysis for Security, PLAS ’11,
pages 6:1–6:12, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0830-4. doi:
10.1145/2166956.2166962.

Alexandru Baltag and Lawrence S. Moss. Logics for epistemic programs. Synthese,
139(2):165–224, 2004.

Alexandru Baltag and Sonja Smets. A Qualitative Theory of Dynamic Interactive
Belief Revision, pages 813–858. Springer International Publishing, Cham, 2016.
ISBN 978-3-319-20451-2. doi: 10.1007/978-3-319-20451-2_39.

Chitta Baral, Gregory Gelfond, Tran Cao Son, and Enrico Pontelli. Using answer
set programming to model multi-agent scenarios involving agents’ knowledge
about other’s knowledge. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS
’10, page 259–266, Richland, SC, 2010. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 9780982657119.

Chitta Baral, Gregory Gelfond, Enrico Pontelli, and Tran Cao Son. An action
language for multi-agent domains: Foundations. CoRR, abs/1511.01960, 2015.
URL http://arxiv.org/abs/1511.01960.

Chitta Baral, Gregory Gelfond, Enrico Pontelli, and Tran Cao Son. An action
language for multi-agent domains. Artificial Intelligence, 302:103601, 2022. ISSN
0004-3702. doi: https://doi.org/10.1016/j.artint.2021.103601. URL https://
www.sciencedirect.com/science/article/pii/S0004370221001521.

201

https://proceedings.neurips.cc/paper/2009/hash/fec8d47d412bcbeece3d9128ae855a7a-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/fec8d47d412bcbeece3d9128ae855a7a-Abstract.html
http://dx.doi.org/10.1145/2166956.2166962
http://dx.doi.org/10.1145/2166956.2166962
http://dx.doi.org/10.1007/978-3-319-20451-2_39
http://arxiv.org/abs/1511.01960
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103601
https://www.sciencedirect.com/science/article/pii/S0004370221001521
https://www.sciencedirect.com/science/article/pii/S0004370221001521

202 Bibliography

Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep learning for ai. Commun.
ACM, 64(7):58–65, June 2021. ISSN 0001-0782. doi: 10.1145/3448250.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The
complexity of decentralized control of markov decision processes. Mathematics of
operations research, 27(4):819–840, 2002.

Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro
Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd,
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon,
and Gerson Zaverucha. Neural-symbolic learning and reasoning: A survey and
interpretation, 2017.

Ivan Boh. Epistemic Logic in the Later Middle Ages (1st ed.). Routledge, 1993.
ISBN 9780203976685. doi: 10.4324/9780203976685.

T. Bolander, M.H. Jensen, and F. Schwarzentruber. Complexity results in epistemic
planning. In IJCAI International Joint Conference on Artificial Intelligence,
volume 2015-January, pages 2791–2797, 2015.

Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single-
and multi-agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34,
2011. doi: 10.1016/0010-0277(83)90004-5.

Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner,
Nick Linck, Andrea Loreggia, Keerthiram Murugesan, Nicholas Mattei, Francesca
Rossi, and Biplav Srivastava. Thinking fast and slow in AI. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, Virtual Event, pages 15042–15046.
AAAI Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17765.

Michael H. Bowling, Rune M. Jensen, and Manuela M. Veloso. Multiagent planning
in the presence of multiple goals. Planning in Intelligent Systems: Aspects,
Motivations and Methods, John Wiley and Sons, Inc, 2005.

Candida Bowtell and Peter Keevash. The n-queens problem, 2021.

Alessandro Burigana, Francesco Fabiano, Agostino Dovier, and Enrico Pontelli.
Modelling multi-agent epistemic planning in asp. Theory and Practice of Logic
Programming, 20(5):593–608, 2020. doi: 10.1017/S1471068420000289.

Christer Bäckström. Expressive equivalence of planning formalisms. Artificial Intel-
ligence, 76(1):17–34, 1995. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-
3702(94)00081-B. URL https://www.sciencedirect.com/science/article/
pii/000437029400081B. Planning and Scheduling.

Cambridge Dictionary. plan. In Cambridge Dictionary. Cambridge University Press,
online edition, 2021. URL https://dictionary.cambridge.org/dictionary/
english/plan.

Jaime G. Carbonell Jr. Politics: Automated ideological reasoning. Cognitive Science,
2(1):27–51, 1978. doi: 10.1207/s15516709cog0201_3.

C. Castelfranchi and R. Falcone. Principles of trust for mas: cognitive anatomy,
social importance, and quantification. In Proceedings International Conference
on Multi Agent Systems (Cat. No.98EX160), pages 72–79, 1998. doi: 10.1109/IC-
MAS.1998.699034.

http://dx.doi.org/10.1145/3448250
http://dx.doi.org/10.4324/9780203976685
http://dx.doi.org/10.1016/0010-0277(83)90004-5
https://ojs.aaai.org/index.php/AAAI/article/view/17765
https://ojs.aaai.org/index.php/AAAI/article/view/17765
http://dx.doi.org/10.1017/S1471068420000289
http://dx.doi.org/https://doi.org/10.1016/0004-3702(94)00081-B
http://dx.doi.org/https://doi.org/10.1016/0004-3702(94)00081-B
https://www.sciencedirect.com/science/article/pii/000437029400081B
https://www.sciencedirect.com/science/article/pii/000437029400081B
https://dictionary.cambridge.org/dictionary/english/plan
https://dictionary.cambridge.org/dictionary/english/plan
http://dx.doi.org/10.1207/s15516709cog0201_3
http://dx.doi.org/10.1109/ICMAS.1998.699034
http://dx.doi.org/10.1109/ICMAS.1998.699034

Bibliography 203

Alexander V. Chagrov and Michael Zakharyaschev. Modal Logic, volume 35 of
Oxford logic guides. Oxford University Press, 1997. ISBN 978-0-19-853779-3.

L. Chu, Seyoun Park, S. Kawamoto, Yan Wang, Yuyin Zhou, Wei Shen, Zhuotun
Zhu, Yingda Xia, Lingxi Xie, Fengze Liu, Qihang Yu, D. Fouladi, S. Shayesteh,
E. Zinreich, J. Graves, K. Horton, A. Yuille, R. Hruban, K. Kinzler, B. Vogelstein,
and E. Fishman. Application of deep learning to pancreatic cancer detection:
Lessons learned from our initial experience. Journal of the American College of
Radiology : JACR, 16 9 Pt B:1338–1342, 2019.

Michael T. Cox. Metacognition in computation: A selected research
review. Artificial Intelligence, 169(2):104–141, 2005. ISSN 0004-
3702. doi: https://doi.org/10.1016/j.artint.2005.10.009. URL https://www.
sciencedirect.com/science/article/pii/S0004370205001530. Special Re-
view Issue.

Michael T. Cox and Anita Raja. Metareasoning: Thinking about Thinking. The
MIT Press, 2011. ISBN 0262014807.

Mathijs De Weerdt and Brad Clement. Introduction to planning in multiagent
systems. Multiagent and Grid Systems, 5(4):345–355, 2009. doi: 10.3233/MGS-
2009-0133.

Mathijs De Weerdt, André Bos, Hans Tonino, and Cees Witteveen. A resource logic
for multi-agent plan merging. Annals of Mathematics and Artificial Intelligence,
37(1-2):93–130, 2003. doi: 10.1023/A:1020236119243.

Agostino Dovier. Logic programming and bisimulation. In ICLP, volume 1433 of
CEUR Workshop Proceedings. CEUR-WS.org, 2015. URL http://ceur-ws.org/
Vol-1433.

Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient algorithm for
computing bisimulation equivalence. Theoretical Computer Science, 311(1-3):
221–256, 2004.

Edmund H. Durfee. Distributed Problem Solving and Planning, pages 118–149.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN 978-3-540-47745-7.
doi: 10.1007/3-540-47745-4_6.

Francesco Fabiano. Design of a solver for multi-agent epistemic planning. In
Proceedings 35th International Conference on Logic Programming (Technical
Communications), pages 403–412, 2019. doi: 10.4204/EPTCS.306.54.

Francesco Fabiano. Towards a complete characterization of epistemic reasoning: the
notion of trust. In Proceedings of the 35th Italian Conference on Computational
Logic, volume 2710 of CEUR Workshop Proceedings, pages 21–35, Calabria,
Italy (Online), October 13-15 2020. CEUR-WS.org. URL http://ceur-ws.org/
Vol-2710/paper2.pdf.

Francesco Fabiano and Alessandro Dal Palù. An ASP approach for arteries
classification in CT scans. Journal of Logic and Computation, 32(2):331–346, 01
2022. ISSN 0955-792X. doi: 10.1093/logcom/exab087.

Francesco Fabiano, Idriss Riouak, Agostino Dovier, and Enrico Pontelli. Non-well-
founded set based multi-agent epistemic action language. In Proceedings of the
34th Italian Conference on Computational Logic, Trieste, Italy, June 19-21, 2019,
volume 2396 of CEUR Workshop Proceedings, pages 242–259. CEUR-WS.org,
2019. URL http://ceur-ws.org/Vol-2396/paper38.pdf.

http://dx.doi.org/https://doi.org/10.1016/j.artint.2005.10.009
https://www.sciencedirect.com/science/article/pii/S0004370205001530
https://www.sciencedirect.com/science/article/pii/S0004370205001530
http://dx.doi.org/10.3233/MGS-2009-0133
http://dx.doi.org/10.3233/MGS-2009-0133
http://dx.doi.org/10.1023/A:1020236119243
http://ceur-ws.org/Vol-1433
http://ceur-ws.org/Vol-1433
http://dx.doi.org/10.1007/3-540-47745-4_6
http://dx.doi.org/10.4204/EPTCS.306.54
http://ceur-ws.org/Vol-2710/paper2.pdf
http://ceur-ws.org/Vol-2710/paper2.pdf
http://dx.doi.org/10.1093/logcom/exab087
http://ceur-ws.org/Vol-2396/paper38.pdf

204 Bibliography

Francesco Fabiano, Alessandro Burigana, Agostino Dovier, and Enrico Pontelli.
EFP 2.0: A multi-agent epistemic solver with multiple e-state representations.
In Proceedings of the Thirtieth International Conference on Automated Planning
and Scheduling, Nancy, France, October 26-30, 2020, pages 101–109. AAAI Press,
2020. URL https://aaai.org/ojs/index.php/ICAPS/article/view/6650.

Francesco Fabiano, Alessandro Burigana, Agostino Dovier, Enrico Pontelli, and
Tran Cao Son. Multi-agent epistemic planning with inconsistent beliefs, trust
and lies. In Duc Nghia Pham, Thanaruk Theeramunkong, Guido Governatori,
and Fenrong Liu, editors, PRICAI 2021: Trends in Artificial Intelligence -
18th Pacific Rim International Conference on Artificial Intelligence, PRICAI
2021, Hanoi, Vietnam, November 8-12, 2021, Proceedings, Part I, volume 13031
of Lecture Notes in Computer Science, pages 586–597. Springer, 2021a. doi:
10.1007/978-3-030-89188-6_44.

Francesco Fabiano, Biplav Srivastava, Jonathan Lenchner, Lior Horesh, Francesca
Rossi, and Marianna Bergamaschi Ganapini. E-pddl: A standardized way of
defining epistemic planning problems. In Knowledge Engineering for Planning
and Scheduling, page in press, Online, August 2021b. URL https://icaps21.
icaps-conference.org/workshops/KEPS/Papers/KEPS_2021_paper_3.pdf.

Ronald Fagin, Yoram Moses, Joseph Y. Halpern, and Moshe Y. Vardi. Reasoning
About Knowledge. MIT press, 1995. ISBN 9780262061629.

Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo Reijers, Barbara Weber, Matthias
Weidlich, and Stefan Zugal. Declarative versus imperative process modeling
languages: The issue of understandability. In Terry Halpin, John Krogstie, Selmin
Nurcan, Erik Proper, Rainer Schmidt, Pnina Soffer, and Roland Ukor, editors,
Enterprise, Business-Process and Information Systems Modeling, pages 353–366,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-01862-6.

Richard E Fikes and Nils J. Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.
doi: 10.1016/0004-3702(71)90010-5.

John H Flavell. Metacognition and cognitive monitoring: A new area of
cognitive–developmental inquiry. American psychologist, 34(10):906, 1979. doi:
10.1037/0003-066X.34.10.906.

Nicoletta Fornara. Interaction and communication among autonomous agents in
multiagent systems. PhD thesis, Università della Svizzera italiana, 2003.

M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124, Dec
2003. ISSN 1076-9757. doi: 10.1613/jair.1129. URL http://dx.doi.org/10.
1613/jair.1129.

Benjamin Franklin. Poor Richard’s almanac, 1750.

Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior
Horesh, Jon Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi,
Biplav Srivastava, and Kristen Brent Venable. Thinking fast and slow in
AI: the role of metacognition. CoRR, abs/2110.01834, 2021. URL https:
//arxiv.org/abs/2110.01834.

Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh,
Jon Lenchner, Andrea Loreggia, Nicholas Mattei, Taher Rahgooy, Francesca Rossi,

https://aaai.org/ojs/index.php/ICAPS/article/view/6650
http://dx.doi.org/10.1007/978-3-030-89188-6_44
http://dx.doi.org/10.1007/978-3-030-89188-6_44
https://icaps21.icaps-conference.org/workshops/KEPS/Papers/KEPS_2021_paper_3.pdf
https://icaps21.icaps-conference.org/workshops/KEPS/Papers/KEPS_2021_paper_3.pdf
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1037/0003-066X.34.10.906
http://dx.doi.org/10.1037/0003-066X.34.10.906
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
https://arxiv.org/abs/2110.01834
https://arxiv.org/abs/2110.01834

Bibliography 205

Biplav Srivastava, and Kristen Brent Venable. Combining fast and slow thinking
for human-like and efficient navigation in constrained environments. CoRR,
abs/2201.07050, 2022. URL https://arxiv.org/abs/2201.07050.

Peter Gärdenfors and David Makinson. Revisions of knowledge systems using
epistemic entrenchment. In Moshe Y. Vardi, editor, Proceedings of the 2nd
Conference on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove,
CA, USA, March 1988, pages 83–95. Morgan Kaufmann, 1988.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Multi-
shot asp solving with clingo. Theory and Practice of Logic Programming, 19(1):
27–82, 2019.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert Kowalski, Bowen, and Kenneth, editors, Proceedings of
International Logic Programming Conference and Symposium, pages 1070–1080.
MIT Press, 1988. URL http://www.cs.utexas.edu/users/ai-lab?gel88.

Michael Gelfond and Vladimir Lifschitz. Action languages. Electron. Trans. Artif.
Intell., 2:193–210, 1998. URL http://www.ep.liu.se/ej/etai/1998/007/.

J. Gerbrandy and W. Groeneveld. Reasoning about information change.
Journal of Logic, Language and Information, 6(2):147–169, 1997. doi:
10.1023/A:1008222603071.

Jelle Gerbrandy. Bisimulations on planet Kripke. Inst. for Logic, Language and
Computation, Univ. van Amsterdam, 1999.

Lakemeyer Gerhard and Levesque Hector J. Only knowing. In Hans van Ditmarsch,
Wiebe van der Hoek, Joseph Y. Halpern, and Barteld Kooi, editors, Handbook
of Epistemic Logic, chapter 2, pages 55–76. College Publications, 2015. ISBN
978-1-84890-158-2.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

G. Gigerenzer and H. Brighton. Homo heuristicus: why biased minds make
better inferences. Top Cogn Sci, 1(1):107–143, Jan 2009. doi: 10.1111/j.1756-
8765.2008.01006.x.

Claudia V. Goldman and Shlomo Zilberstein. Decentralized control of cooperative
systems: Categorization and complexity analysis. J. Artif. Intell. Res.(JAIR),
22:143–174, 2004. doi: 10.1613/jair.1427.

Michael S. A. Graziano. Consciousness and the Social Brain. Oxford University
Press, 2013.

Michael S. A. Graziano, Arvid Guterstam, Branden J. Bio, and Andrew I. Wilterson.
Toward a standard model of consciousness: Reconciling the attention schema,
global workspace, higher-order thought, and illusionist theories. Cognitive
Neuropsychology, 37(3-4):155–172, 2020. doi: 10.1080/02643294.2019.1670630.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with
factored MDPs. In Advances in Neural Information Processing Systems 14,
December 3-8, 2001, Vancouver, British Columbia, Canada, pages 1523–1530.
MIT Press, 2001. URL https://proceedings.neurips.cc/paper/2001/hash/
7af6266cc52234b5aa339b16695f7fc4-Abstract.html.

https://arxiv.org/abs/2201.07050
http://www.cs.utexas.edu/users/ai-lab?gel88
http://www.ep.liu.se/ej/etai/1998/007/
http://dx.doi.org/10.1023/A:1008222603071
http://dx.doi.org/10.1023/A:1008222603071
http://dx.doi.org/10.1111/j.1756-8765.2008.01006.x
http://dx.doi.org/10.1111/j.1756-8765.2008.01006.x
http://dx.doi.org/10.1613/jair.1427
http://dx.doi.org/10.1080/02643294.2019.1670630
https://proceedings.neurips.cc/paper/2001/hash/7af6266cc52234b5aa339b16695f7fc4-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/7af6266cc52234b5aa339b16695f7fc4-Abstract.html

206 Bibliography

Bob Hanson. Sudoku Assistant/Solver. https://www.stolaf.edu/people/
hansonr/sudoku/, September 2021.

Yuval N. Harari. Sapiens: a brief history of humankind. Harper, 2015, 2015. URL
https://search.library.wisc.edu/catalog/9910419687402121.

Stephen Hawking and Leonard Mlodinow. The Grand Design. Bantam Books, 2010.
ISBN 0-553-80537-1.

Malte Helmert. Concise finite-domain representations for pddl planning
tasks. Artif. Intell., 173(5–6):503–535, April 2009. ISSN 0004-3702. doi:
10.1016/j.artint.2008.10.013.

Andreas Herzig, Jérôme Lang, and Pierre Marquis. Action progression and revision
in multiagent belief structures. In Sixth Workshop on Nonmonotonic Reasoning,
Action, and Change (NRAC 2005). Citeseer, 2005.

Andreas Herzig, Emiliano Lorini, Jomi Fred Hübner, and Laurent Vercouter.
A logic of trust and reputation. Log. J. IGPL, 18(1):214–244, 2010. doi:
10.1093/jigpal/jzp077.

Jaakko Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Ithaca: Cornell University Press, 1962.

Xiao Huang, Biqing Fang, Hai Wan, and Yongmei Liu. A general multi-agent
epistemic planner based on higher-order belief change. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, pages 1093–1101. ijcai.org, 2017.
doi: 10.24963/ijcai.2017/152.

Martin Holm Jensen. Epistemic and doxastic planning. Technical University of
Denmark, Applied Mathematics and Computer Science, 2014.

Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011. ISBN
978-0374275631.

Vaibhav Katewa. Analysis and design of multi-agent systems under communication
and privacy constraints. University of Notre Dame, 2017.

Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Auto-
mated algorithm selection: Survey and perspectives. Evol. Comput., 27(1):3–45,
2019. doi: 10.1162/evco_a_00242.

Emil Keyder and Héctor Geffner. Heuristics for planning with action costs revisited.
In Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference
on Artificial Intelligence, pages 588–592, Amsterdam, The Netherlands, The
Netherlands, 2008. IOS Press. ISBN 978-1-58603-891-5.

Filippos Kominis and Hector Geffner. Beliefs in multiagent planning: From one
agent to many. In Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June
7-11, 2015, pages 147–155. AAAI Press, 2015. URL http://www.aaai.org/ocs/
index.php/ICAPS/ICAPS15/paper/view/10617.

Iuliia Kotseruba and John K. Tsotsos. 40 years of cognitive architectures: core
cognitive abilities and practical applications. Artificial Intelligence Review, 53(1):
17–94, Jan 2020. doi: 10.1007/s10462-018-9646-y.

https://www.stolaf.edu/people/hansonr/sudoku/
https://www.stolaf.edu/people/hansonr/sudoku/
https://search.library.wisc.edu/catalog/9910419687402121
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1093/jigpal/jzp077
http://dx.doi.org/10.1093/jigpal/jzp077
http://dx.doi.org/10.24963/ijcai.2017/152
http://dx.doi.org/10.1162/evco_a_00242
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10617
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10617
http://dx.doi.org/10.1007/s10462-018-9646-y

Bibliography 207

Jerald D. Kralik, Jee Hang Lee, Paul S. Rosenbloom, Philip C. Jackson, Susan L.
Epstein, Oscar J. Romero, Ricardo Sanz, Othalia Larue, Hedda R. Schmidtke,
Sang Wan Lee, and Keith McGreggor. Metacognition for a common model of
cognition. Procedia Computer Science, 145:730–739, 2018. ISSN 1877-0509. doi:
https://doi.org/10.1016/j.procs.2018.11.046. URL https://www.sciencedirect.
com/science/article/pii/S1877050918323329. Postproceedings of the 9th
Annual International Conference on Biologically Inspired Cognitive Architectures,
BICA 2018 (Ninth Annual Meeting of the BICA Society), held August 22-24,
2018 in Prague, Czech Republic.

Saul A. Kripke. Semantical analysis of modal logic i normal modal propo-
sitional calculi. Mathematical Logic Quarterly, 9(5-6):67–96, 1963. doi:
10.1002/malq.19630090502.

Ugur Kuter, Dana S. Nau, Elnatan Reisner, and Robert P. Goldman. Using classical
planners to solve nondeterministic planning problems. In Proceedings of the
Eighteenth International Conference on Automated Planning and Scheduling,
ICAPS 2008, Sydney, Australia, September 14-18, 2008, pages 190–197. AAAI,
2008. URL http://www.aaai.org/Library/ICAPS/2008/icaps08-024.php.

Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann.
Industry 4.0. Business & information systems engineering, 6(4):239–242, 2014.
doi: 10.1007/s12599-014-0334-4.

Tiep Le, Francesco Fabiano, Tran Cao Son, and Enrico Pontelli. EFP and PG-EFP:
Epistemic forward search planners in multi-agent domains. In Proceedings of the
Twenty-Eighth International Conference on Automated Planning and Scheduling,
pages 161–170, Delft, The Netherlands, June 24–29 2018. AAAI Press. ISBN
978-1-57735-797-1. URL https://aaai.org/ocs/index.php/ICAPS/ICAPS18/
paper/view/17733.

Vladimir Lifschitz. What is answer set programming? In Proceedings of the
23rd National Conference on Artificial Intelligence - Volume 3, AAAI’08, page
1594–1597. AAAI Press, 2008. ISBN 9781577353683.

Nir Lipovetzky and Hector Geffner. Width-based algorithms for classical planning:
New results. In Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan, editors,
ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August
2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014), volume 263 of Frontiers in Artificial Intelligence and
Applications, pages 1059–1060. IOS Press, 2014. doi: 10.3233/978-1-61499-419-0-
1059.

Nir Lipovetzky and Hector Geffner. Best-first width search: Exploration and
exploitation in classical planning. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, pages 3590–3596, San Francisco, Califor-
nia, USA, February 4-9 2017. URL http://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14862.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine Learning Proceedings 1994, pages 157–163. Elsevier, 1994.
doi: 10.1016/B978-1-55860-335-6.50027-1.

Gary Marcus. The next decade in ai: Four steps towards robust artificial intelligence,
2020.

http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.11.046
http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.11.046
https://www.sciencedirect.com/science/article/pii/S1877050918323329
https://www.sciencedirect.com/science/article/pii/S1877050918323329
http://dx.doi.org/10.1002/malq.19630090502
http://dx.doi.org/10.1002/malq.19630090502
http://www.aaai.org/Library/ICAPS/2008/icaps08-024.php
http://dx.doi.org/10.1007/s12599-014-0334-4
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17733
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17733
http://dx.doi.org/10.3233/978-1-61499-419-0-1059
http://dx.doi.org/10.3233/978-1-61499-419-0-1059
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14862
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14862
http://dx.doi.org/10.1016/B978-1-55860-335-6.50027-1

208 Bibliography

John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon.
A proposal for the dartmouth summer research project on artificial intelligence,
august 31, 1955. AI Magazine, 27(4):12, Dec. 2006. doi: 10.1609/aimag.v27i4.1904.
URL https://ojs.aaai.org/index.php/aimagazine/article/view/1904.

Drew McDermott, Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett,
Dave Christianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Penberthy,
David Smith, Ying Sun, and Daniel Weld. PDDL - the planning domain definition
language. Technical report, Technical Report, 1998.

Fiona McNeill and Alan Bundy. Facilitating interaction between virtual agents by
changing ontological representation. In Encyclopedia of E-Business Development
and Management in the Global Economy, pages 934–941. IGI Global, 2010.

John-Jules Ch. Meyer. Modal Epistemic and Doxastic Logic, pages 1–38. Springer
Netherlands, Dordrecht, 2003. ISBN 978-94-017-4524-6. doi: 10.1007/978-94-017-
4524-6_1.

Lawrence S. Moss. Dynamic epistemic logic. In Hans van Ditmarsch, Wiebe van der
Hoek, Joseph Y. Halpern, and Barteld Kooi, editors, Handbook of Epistemic Logic,
chapter 6, pages 262–312. College Publications, 2015. ISBN 978-1-84890-158-2.

Andrzej Mostowski. An undecidable arithmetical statement. Fundamenta
Mathematicae, 36(1):143–164, 1949. doi: 10.4064/fm-36-1-143-164. URL
http://eudml.org/doc/213187.

Christian J. Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim Miller,
Adrian R. Pearce, and Liz Sonenberg. Planning over multi-agent epistemic
states: A classical planning approach. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA,
pages 3327–3334. AAAI Press, 2015. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI15/paper/view/9974.

Thomas O. Nelson. Metamemory: A theoretical framework and new find-
ings. Psychology of Learning and Motivation, 26:125–173, 1990. ISSN 0079-
7421. doi: https://doi.org/10.1016/S0079-7421(08)60053-5. URL https://www.
sciencedirect.com/science/article/pii/S0079742108600535.

Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, jun 2007. ISSN
0362-1340. doi: 10.1145/1273442.1250746.

Robert Paige and Robert E Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973–989, 1987.

Edwin P. D. Pednault. ADL and the State-Transition Model of Action. Journal
of Logic and Computation, 4(5):467–512, 10 1994. ISSN 0955-792X. doi:
10.1093/logcom/4.5.467.

Ingmar Posner. Robots thinking fast and slow: On dual process theory and
metacognition in embodied AI, 2020. URL https://openreview.net/forum?
id=iFQJmvUect9.

Henry Prakken. Logical tools for modelling legal argument: a study of defeasible
reasoning in law, volume 32. Springer Science & Business Media, 2013.

Rasmus Rendsvig and John Symons. Epistemic Logic. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Summer 2021 edition, 2021.

http://dx.doi.org/10.1609/aimag.v27i4.1904
https://ojs.aaai.org/index.php/aimagazine/article/view/1904
http://dx.doi.org/10.1007/978-94-017-4524-6_1
http://dx.doi.org/10.1007/978-94-017-4524-6_1
http://dx.doi.org/10.4064/fm-36-1-143-164
http://eudml.org/doc/213187
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9974
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9974
http://dx.doi.org/https://doi.org/10.1016/S0079-7421(08)60053-5
https://www.sciencedirect.com/science/article/pii/S0079742108600535
https://www.sciencedirect.com/science/article/pii/S0079742108600535
http://dx.doi.org/10.1145/1273442.1250746
http://dx.doi.org/10.1093/logcom/4.5.467
http://dx.doi.org/10.1093/logcom/4.5.467
https://openreview.net/forum?id=iFQJmvUect9
https://openreview.net/forum?id=iFQJmvUect9

Bibliography 209

Silvia Richter and Matthias Westphal. The lama planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence Research, 39:
127–177, 2010. doi: 10.1613/jair.2972.

Idriss Riouak. Non-well-founded set based multi-agent epistemic action language.
Unpublished MSc Thesis, 2019.

Leif Benjamin Rodenhäuser. A matter of trust: Dynamic attitudes in epistemic
logic. PhD thesis, Universiteit van Amsterdam [Host], 2014.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach,
Third International Edition. Pearson Education, 2010. ISBN 978-0-13-207148-
2. URL http://vig.pearsoned.com/store/product/1,1207,store-12521_
isbn-0136042597,00.html.

Boris Schling. The Boost C++ Libraries. XML Press, 2011. ISBN 0982219199.

Amitai Shenhav, Matthew M. Botvinick, and Jonathan D. Cohen. The expected
value of control: An integrative theory of anterior cingulate cortex function. Neu-
ron, 79(2):217–240, July 2013. ISSN 0896-6273. doi: 10.1016/j.neuron.2013.07.007.

Raymond R. Smullyan. First-order logic, volume 43. Springer-Verlag Berlin
Heidelberg, 1968. ISBN 978-3-642-86718-7. doi: 10.1007/978-3-642-86718-7.

Tran Cao Son, Enrico Pontelli, Chitta Baral, and Gregory Gelfond. Finitary s5-
theories. In European Workshop on Logics in Artificial Intelligence, pages 239–252.
Springer, 2014. doi: 10.1093/jigpal/jzm059.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional,
4th edition, 2013. ISBN 0321563840.

Alice Tarzariol. Evolution of algorithm portfolio for solving strategies. In Alberto
Casagrande and Eugenio G. Omodeo, editors, Proceedings of the 34th Italian
Conference on Computational Logic, Trieste, Italy, June 19-21, 2019, volume
2396 of CEUR Workshop Proceedings, pages 327–341. CEUR-WS.org, 2019. URL
http://ceur-ws.org/Vol-2396/paper37.pdf.

Alejandro Torreño, Eva Onaindia, and Óscar Sapena. Fmap: Distributed cooperative
multi-agent planning. Applied Intelligence, 41(2):606–626, 2014.

Alan M. Turing. Computing machinery and intelligence. Mind, 59(October):433–460,
1950. doi: 10.1093/mind/LIX.236.433.

Johan Van Benthem, Jan Van Eijck, and Barteld Kooi. Logics of communication
and change. Information and computation, 204(11):1620–1662, 2006. doi:
10.1016/j.ic.2006.04.006.

Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic, volume 337. Springer Netherlands, 2007. ISBN 978-1-4020-6908-6. doi:
10.1007/978-1-4020-5839-4.

Hans van Ditmarsch, Wiebe van der Hoek, Joseph Y. Halpern, and Barteld Kooi,
editors. Handbook of Epistemic Logic. College Publications, 2015. ISBN 978-1-
84890-158-2.

Jan van Eijck. Dynamic Epistemic Modelling. CWI. Software Engineering [SEN],
2004.

http://dx.doi.org/10.1613/jair.2972
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://dx.doi.org/10.1016/j.neuron.2013.07.007
http://dx.doi.org/10.1007/978-3-642-86718-7
http://dx.doi.org/10.1093/jigpal/jzm059
http://ceur-ws.org/Vol-2396/paper37.pdf
http://dx.doi.org/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1016/j.ic.2006.04.006
http://dx.doi.org/10.1016/j.ic.2006.04.006
http://dx.doi.org/10.1007/978-1-4020-5839-4
http://dx.doi.org/10.1007/978-1-4020-5839-4

210 Bibliography

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009. ISBN 1441412697.

Hai Wan, Rui Yang, Liangda Fang, Yongmei Liu, and Huada Xu. A complete
epistemic planner without the epistemic closed world assumption. In IJCAI
International Joint Conference on Artificial Intelligence, pages 3257–3263, Buenos
Aires, Argentina, July 25-31 2015. URL http://ijcai.org/Abstract/15/459.

Quan Yu, Ximing Wen, and Yongmei Liu. Multi-agent epistemic explanatory
diagnosis via reasoning about actions. In Francesca Rossi, editor, IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 1183–1190. IJCAI/AAAI, 2013. URL
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6631.

http://ijcai.org/Abstract/15/459
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6631

	cover.pdf
	ffabiano-phdthesis_orig.pdf
	List of Figures
	List of Tables
	Introduction & Preliminaries
	Motivation
	Planning: Notation and Concepts
	Basic Concepts
	Planning Problem Categories
	Classical Planning
	Conformant/Contingent Planning
	Multi-Agent Planning

	Reasoning about Knowledge and Beliefs
	Epistemic Logic
	Epistemic Logic Terminology
	Epistemic Logic Semantic
	Axioms Systems
	Knowledge or Belief

	Multi-agent Epistemic Planning
	Epistemic Actions
	Multi-agent Epistemic Planning Problem
	Complexity Overview

	Possibilities-Based MEP Action Language
	Background
	The Epistemic Action Language mA*
	Possibilities

	The Epistemic Action Language mAp
	The Language Specification
	The Language Properties
	mA* and mAp Comparison

	Communication with Trust
	Trust in mAp
	un/mis-Trustworthy Announcement
	un-Trustworthy Announcement
	mis-Trustworthy Announcement

	Desired Properties

	Capturing Trust with Update Models
	mA* un-Trustworthy Announcement
	mA* mis-Trustworthy Announcement

	Trust, Misconception, and Lies in MEP
	Agents' Attitudes and Inconsistent Beliefs
	Enriched Domains

	Updated Transition Function
	Examples of Actions Execution
	Desired Properties

	Related Work

	Comprehensive Multi-Agent Epistemic Planners
	Background
	Imperative and Declarative Programming
	Imperative Programming
	Declarative Programming

	EFP: an Epistemic Forward Planner
	The Overall Architecture
	EFP 2.0
	Experimental Evaluation
	Alternative Transition Functions

	Optimizations and Alternative Search Strategies
	Code Optimizations
	Alternative Search Strategies and Heuristics

	PLATO: an Epistemic Planner in ASP
	Modeling MEP using ASP
	Epistemic states
	Entailment
	Initial state generation
	Transition function
	Optimizations
	Multi-shot encoding

	Experimental Evaluation
	Correctness of PLATO

	``Fast and Slow'' Epistemic Planning
	Background
	Theories of Human Decision Making
	AI Thinking, Fast and Slow

	MEP System-1 and System-2
	Meta-cognition

	A Fast and Slow Epistemic Architecture
	E-PDDL: Standardized MEP Problems Language
	Problem Domain
	Problem Instance
	From Implicit to Explicit Belief Update

	The Overall Architecture

	Conclusion
	Propositions Proofs
	Preliminary Definitions
	Proofs of Propositions 2.3 to 2.5
	Proofs of Propositions 3.1 and 3.2
	Updated States Size Finiteness
	Proofs

	Proof of Proposition 4.1
	Proofs of Propositions 5.1 to 5.3
	Abbreviations
	PLATO Entailment Correctness
	PLATO Initial State Construction Correctness
	PLATO Transition Function Correctness

	Bibliography

